

DBpedia Tutorial @ Data Week 2024

Milan Dojchinovski, Sebastian Hellmann, Jan Forberg, Jonathan Justavino Lüderitz, Johannes Frey, Kirill Yankov and Julia Holze

dbpedia.org

Meet the Organizers

All members of the DBpedia core team hosted by:

Institute of Applied
Informatics /
DBpedia
Association, Leipzig,
DE

Milan Dojchinovski

Sebastian Hellmann

Jan Forberg

Johannes Frey

Julia Holze

Kirill Yankov

Jonathan Lüderitz

About the tutorial

- Get familiar with DBpedia
 - history of DBpedia, community, DBpedia KG release process
 - o how a DBpedia triple is born
 - o ontology, endpoints
- Learn about the DBpedia technology stack
 - DBpedia Databus
 - DBpedia Spotlight
 - DBpedia Lookup
- Learn best practices via several practical showcases
 - Semantic Text Annotation and Search using Databus and DBpedia Spotlight
 - Cl and Databus publishing using Jenkins
 - Databus Metadata Overlay Search System
 - Terminology Server using DBpedia Lookup

Agenda

- 11:00 11:05 **Opening**, by the tutorial organizers
- 11:05 12:30 **Session 1: DBpedia Tech Overview and DBpedia Databus**

DBpedia overview, Databus Use Cases, DBpedia Databus, Databus collections, deploying own DBpedia KG

<u>Lunch break</u> (60 mins)

• 13:30 - 15:00 **Session 2: DBpedia and Databus Showcases**Semantic Indexing and Search using DBpedia Spotlight and Databus, CI and Databus publishing using Jenkins

<u>Coffee break</u> (30 mins)

- 15:30 16:50 **Session 3: Bpedia and Databus Showcases (cont.)**Databus Metadata Overlay Search System (MOSS), Terminology Server & Archivo
 - 16:50 17:00 **Closing session**

^{*} all times are in CEST time zone

Guidelines

- Feel free to engage/ask questions:
 - o after each session
- The slides are made public
 - o see the footer placeholder: http://tinyurl.com/DBpediaDataWeek2024

DBpedia Overview

by Milan Dojchinovski

DBpedia Mission

2007 - A crowd-sourced community effort to **extract structured information from Wikipedia** and make this information available on the Web.

benefit: query Wikipedia as a DB

2024 - Current mission: Global and Unified Access to Knowledge Graphs

- Original definition still holds true, moreover ...
- Global DBpedia -> data beyond Wikipedia
 - 1. offer links to other sources
 - 2. **platform** (i.e. databus) to integrate your data with all other data

DBpedia Milestones

2007 formation of the Linked Data Cloud

2010

Open editing of DBpedia Ontology A new type of Cyc?

2012-2016

Covering all 140 Wikipedias, Commons, Wikidata 14.4 B facts extracted

2015

2020 - 22 B facts per month

Huge Linked Data - derived Open Knowledge Graphs (OKG)

2020

2007

2007

first Wikipedia extraction, SPARQL Linked Data

2009

Major boost in KG and Linking Research

IBM Watson

2011

Industry

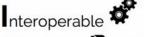
adoption

YAHOO!

BBC

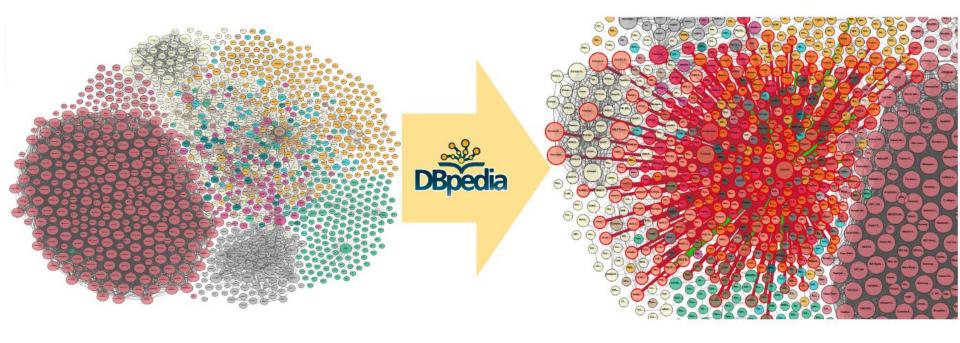
2014

Foundation of DBpedia Association Leipzig 2017


SHACL W3C Standard by Uni Leipzig Test-driven KG development 2019

DBpedia Innovation Platform -Central hub for Linked Data Technology and Ecosystem

2020 - FAIR Linked Data

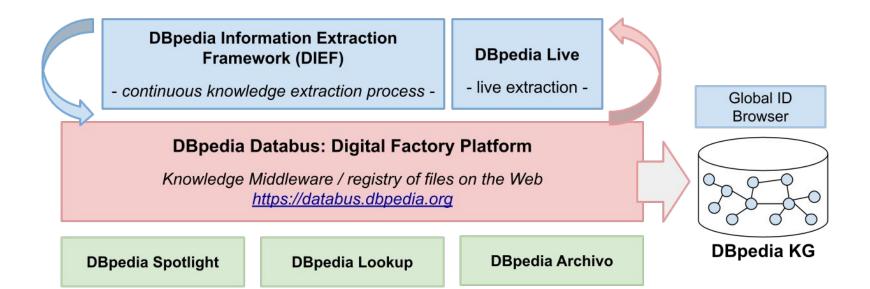


DBpedia is not only connecting & publishing data

... but also people and orgs

Organizational Structure in Numbers

Around 20 DBpedia Chapters


- o language chapters, English, German, Dutch, Czech, Polish, Hungarian, ...
- o **regional chapters**, e.g. for cities or individual countries
- o domain chapters, e.g. for law, medicine, media and science
- each chapter hosts and maintains localized DBpedia version
- more about DBpedia chapters at https://www.dbpedia.org/members/chapter-overview/

30+ DBpedia members

- 41% industry and start-up, 37% non-profit, 22% tiny & self-employed
- o join the network of pioneers to shape the future of knowledge graphs
- o apply via https://www.dbpedia.org/members/membership/

The DBpedia Tech Ecosystem

How a DBpedia triple is born?

New York City in DBpedia

New York

City

Country **United States** State New York Mid-Atlantic Region Bronx (The Bronx) Constituent Kings (Brooklyn) counties (boroughs) New York (Manhattan) Queens (Queens) Richmond (Staten Island) Historic New Netherland colonies Province of New York

Settled

1624 (approx) Consolidated 1898

Named for James. Duke of York

Government

 Type Strong mayor-council · Body New York City Council

 Mayor Area[2]

 Total 472.43 sq mi (1,223.59 km2)

Bill de Blasio (D)

 Land 300.46 sq mi (778.19 km²)

ॐ DBpedia ● Browse using ▼ ■ Formats ▼		☐ Faceted Browser ☐ Sparql Endpoint
New York, often called New York City to distinguish United States. With a 2020 population of 8,804,19	ate), from Named Graph: http://dbpedia.org , within Data Space: dbpedia.org , it from New York State, or NYC for short, is the most populous cit and distributed over 300.46 square miles (778.2 km2), New York Cdd States. Located at the southern tip of the State of New York, the	City is also
dbo:areaCode	• 212/646/332,718/347/929,917	
dbo:areaLand	778187827.631555 (xsd:double)778190000.000000 (xsd:double)	
dbo:areaTotal	1223588082.966037 (xsd:double)1223590000.000000 (xsd:double)	
dbo:areaWater	445400000.000000 (xsd:double)445400255.334482 (xsd:double)	
dbo:demonym	New Yorker (en)	
<u>dbo:elevation</u>	10.000000 (xsd:double)10.058400 (xsd:double)	
dbo:governingBody	dbr:New York_City_Council	
dbo:governmentType	dbr:Mayor-council_government	
dbo:namedAfter	dbr:James_II of England	
dbo:politicalLeader	dbr:New York City PoliticalFunction 1	

Overarching DBpedia KG Release Process

- 1. Definition of mappings and ontology definition
- 2. Execution of the knowledge extraction process over wikipedia dumps
- 3. Parsing and validation of the data against strict rules
- 4. Release of (intermediate) data artifacts
- 5. ID management and knowledge fusion from all language editions
- 6. Deployment of the resulting KG

DBpedia Datasets Partitions

Available extractions, 22 billion facts total (500GB without text)

- Mapping-based (rule-based)
- **Generic** (automatic)
- Text
- Wikidata

... bonus:

- Fusion fused version of all wikipedia languages
- Global IDs unique URIs across all languages (https://global.dbpedia.org)

... data derived based on the Wikimedia XML dumps

How a DBpedia triple is born

... using mappings-based extraction?

Structure of Wikipedia articles

You can view and copy the source of this page:

This article is **written in American English**, which has its own spelling conventions (*color*, *defense*, *traveled*) and some terms that are used in it may be different or absent from other varieties of English. According to the relevant style guide, this should not be changed without broad consensus.

```
{{short description|Most populous city in the United States}}
{{redirect2|NYC|New York, New York|4=New York City (disambiguation)|5=and|6=NYC (disambiguation)|7=and|8=New York, New York (disambiguation)}}
{{pp-semi-indef}}
{{Use mdy dates|date=February 2021}}
<!-- Don't add a particular image size to most images of this article; it will be reverted. The images need to be able to customize from personal
preferences. -->
{{Infobox settlement
                                  = New York<!-- DO NOT change without discussion -->
 name
  subdivision_type
                                  = Country
  settlement_type
                                  = [[City (New York)|City]]
  named_for
                                  = [[James II of England|James, Duke of York]]
  image skyline
                                  = {{multiple image
  border
                           = infobox
  total width
                           = 295
  image_style
                           = 1/3/2/2
  perrow
  image1
                           = NYC Downtown Manhattan Skyline seen from Paulus Hook 2019-12-20 IMG 7347 FRD (cropped).jpg
  alt1
                           = Lower Manhattan
  image2
                           = Lower Central Park Shot 5 (cropped).JPG
                           = Central park scenery
  alt2
  image3
                           = City Building and Unisphere -- this morning (50155048863) (cropped).jpg
  alt3
                           = The Unisphere, a large metal globe sculpture
                           = Spiderweb BB ieh.ing
  image4
```

Triple Generation using Mappings

- Mappings maintained on the mappings server: http://mappings.dbpedia.org/
- Mappings for approx. 40 languages, 6 datasets
- http://mappings.dbpedia.org/index.php/Mapping_en:Infobox_settlement


```
{{Infobox settlement
                                  = New York<!-- DO NOT change
  subdivision type
                                   = Country
 settlement type
                                  = [[City (New York)|City]]
                                  = [[James II of England|James
  named_for
  image skyline
                                  = {{multiple image
  border
                           = infobox
 total width
                           = 295
  image style
                           = 1/3/2/2
  perrow
                           = NYC Downtown Manhattan Skyline see
  image1
  alt1
                           = Lower Manhattan
                           = Lower Central Park Shot 5 (cropped
  image2
                           = Central park scenery
  alt2
                           = City Building and Unisphere -- thi
  image3
  alt3
                           = The Unisphere, a large metal globe
                           = Spiderweb BB jeh.jpg
  image4
  alt4
                           = Brooklyn Bridge
  image5
                           = Grand Central Terminal ceiling vie
                           = Grand Central Terminal
  alt5
                           = Lady Liberty under a blue sky (crc
  image6
                           = Statue of Liberty
  alt6
```

Mappings Example


```
= Imperial
  unit pref
                                       = <ref name="(
  area footnotes
data/data/gazetteer/2021_Gazetteer/2021_gaz_plac
  area total so mi
                                       = 472.43
                                                                                              Property Mapping (help)
                                       = 1223.59
 area total km2
                                                                                              template property
                                                                                                                  area total km2
                                       = 300.46
 area land sq mi
 area_land_km2
                                       = 778.19
                                                                                              ontology property
                                                                                                                  areaTotal
                                       = 171.97
 area water so mi
                                                                                              unit
                                                                                                                  squareKilometre
 area_water_km2
                                       = 445.40
                                       = -05.00
 utc offset1
                                                                                              Property Mapping (help)
                                       = <ref name="(
  elevation_footnotes
 access-date=January 31, 2008 | publisher=[[Unite
                                                                                              template property
                                                                                                                area water km2
 elevation m
                                       = 10
                                                                                              ontology property
                                                                                                                areaWater
 elevation ft
                                       = 33
                                                                                                                squareKilometre
                                       = [[List of Ur
 population rank
```


How a DBpedia triple is born

... using generic extraction?

https://tinyurl.com/DBpediaDataWeek2024

Generic Extraction Example


```
dbp:name
                                                                                                       · New York (en)
                                                                                                       · dbr:James II of England
 image7
                            = The United Nations Secretariat Bu
  alt7
                               = United Nations headquarters bui
                                                                        dbp:nicknames
                                                                                                       . The Big Apple, The City That Never Sleeps, Gotham, and others (en
  image8
                              = Greenpoint Houses.JPG
  alt8
                               = Rowhouses in Brooklyn
                                                                        dbp:perrow
                                                                                                       · 2 (xsd:integer)
 image_caption
                               = '''From top, left to right''':
[[Grand Central Terminal]]; the [[Statue of Liberty]]; the [
                                                                        dbp:populationAsOf

    2020 (xsd:integer)

                               = Flag of New York City.svg
 image flag
                               = Seal of New York City BW.svg
  image_seal
                                                                        dbp:populationDemonym

    New Yorker (en)

  image blank emblem
                               = NYC Logo Wolff Olins.svg
 blank emblem type
                               = [[Wordmark]]
                               = '[[The Big Apple]]'', ''[[The
                                                                        dbp:populationDensitvKm

    11313.680000 (xsd:double)

nicknames
                               , and [[Nicknames of New York Ci
York City to 1898[Gotham]]'
 image map
                               = {{Maplink|frame=yes|plain=y|fra
                                                                        dbp:populationDensitySqMi

    29302.370000 (xsd:double)

City|marker=city|type2=shape|stroke-width2=2|stroke-color2=#
                               = {{flag|United States}}
 subdivision name
                                                                        dbp:populationMetro

    23582649 (xsd:integer)

                               = Interactive map of New York Cit
  map caption
                               = {{coord|40|42|46|N|74|00|22|W|r
 coordinates
                                                                        dbp:populationRank

    1 (xsd:integer)

    8804190 (xsd:integer)
```

Output triples:

dbr:New_York_City
dbp:nicknames "The Big
Apple, The City That Never
Sleeps, Gotham, and others"

21

Generic Extraction

- Automatic extraction and export of information
 - Covers 130+ languages and exports 30 different datasets
 - https://databus.dbpedia.org/dbpedia/generic/
- Extraction of:
 - unmapped information in infoboxes
 - other structured information found on the Wikipedia pages
- 1. Automatic extraction of unmapped properties from infoboxes
 - covers all infobox types along with their attributes
 - http://dbpedia.org/property/ + the name of the infobox attribute
 - e.g. http://dbpedia.org/property/birthplace for the Wikipedia attribute "birthplace"
 - objects are created from the attribute values
- 2. Automatic extraction of other structured information
 - set of extractors
 - https://github.com/dbpedia/extraction-framework/tree/master/core/src/main/scala/org/dbpedia/extraction/mappings
 - o categories, interlanguage links, labels, and many others

Text Extraction

- Wikipedia articles texts
- https://databus.dbpedia.org/dbpedia/text/
- 132 languages, 8 datasets
 - Short and long abstracts
 - content/text + structure
 - sections, sub-sections, paragraphs
 - links
- Information modeled using the NIF Format
- Use cases
 - Training data for text mining
 - Fact extraction

Hittler ordered the German Army to enter Prague on 15 March 1939, and from Prague Castle proclaimed Bohemia and Moravia a Germ German and (mostly native German-speaking) Jewish populations. [47] From 1939, when the country was occupied by Nazi Germany, It the Germans. In 1942, Prague was witness to the assassination of one of the most powerful men in Nazi Germany—Reinhard Heydricl Kubis. Hittler ordered bloody reprisals. [48]

In February 1945, Prague suffered several bombing raids by the US Army Air Forces. 701 people were killed, more than 1,000 people.

Vinohrady Synagogue) were destroyed. [49] Many historic structures in Prague, however, escaped the destruction of the war and the da pilots, it was the result of a navigational mistake. In March, a deliberate raid targeted military factories in Prague, killing about 370 people.

On 5 May 1945, two days before Germany capitulated, an <u>uprising against Germany occurred</u>. Several thousand Czechs were killed in the <u>3rd Shock Army</u> of the <u>Red Army t</u>ook the city almost unopposed. The majority (about 50,000 people) of the German population of

https://en.wikipedia.org/wiki/Prague

Wikidata Extraction

- Same approach as for Wikipedia
- Generic and mappings-based
- Mappings in JSON

https://databus.dbpedia.org/dbpedia/wikidata


Benefit: Unified access over Wikipedia and Wikidata

```
"P279": [
        "rdfs:subClassOf": "$getDBpediaClass"
"P625": [
        "rdf:type": "http://www.w3.org/2003/01/geo/wgs84_pos#Spatia
    },
        "geo:lat": "$getLatitude"
    },
        "geo:long": "$getLongitude"
    },
        "georss:point": "$getGeoRss"
],
```

DBpedia Ontology

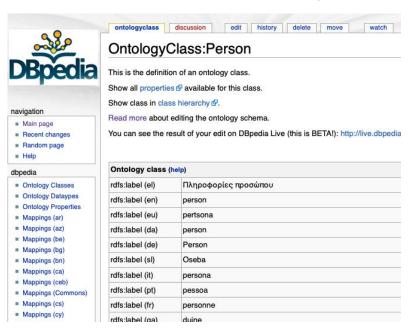
DBpedia

- The heart of DBpedia
- A shallow cross-domain ontology
 - model information extracted from Wikipedia
 - ... BUT goes beyond Wikipedia
 - e.g. mappings for the Dutch National KG
- Generated on-the-fly
 - when changes in the mappings wiki are introduced
- Stats
 - o over 700 classes and more than 3,000 properties
- Since v3.7: a directed-acyclic graph, not a tree
 - classes may have multiple superclasses
- Get it from the Databus
 - https://databus.dbpedia.org/ontologies/dbpedia.org/ontology-DEV
 - published via DBpedia Archivo

Ontology Classes

- owl:Thing
 - Activity (edit)
 - Game (edit)
 - BoardGame (edit)
 - CardGame (edit)
 - Sales (edit)
 - Sport (edit)
 - Athletics (edit)
 - TeamSport (edit)
 - Agent (edit)
 - Deity (edit)
 - Employer (edit)
 - Family (edit)
 - NobleFamily (edit)
 - FictionalCharacter (edit)
 - ComicsCharacter (edit)
 - AnimangaCharacter (edit)
 - DisneyCharacter (edit)
 - MythologicalFigure (edit)
 - NarutoCharacter (edit)
 - SoapCharacter (edit)
 - Organisation (edit)
 - Broadcaster (edit)
 - BroadcastNetwork (edit)

DBpedia Ontology (cont.)


Domain Range

Person

xsd:string

Edit via the mappings server

http://mappings.dbpedia.org/index.php/OntologyClass:Person

Browse the ontology

http://mappings.dbpedia.org/server/ontology/classes/

Properties on Person:

awardName (edit)

Ontology Classes

- owl:Thing
 - Activity (edit)
 - Game (edit)
 - BoardGame (edit)
 - CardGame (edit)
 - Sales (edit)
 - Sport (edit)
 - Athletics (edit)
 - TeamSport (edit)
 - Agent (edit)
 - Deity (edit)
 - Employer (edit)
 - Family (edit)
 - NobleFamily (edit)
 - FictionalCharacter (edit)
 - ComicsCharacter (edit)
 AnimangaCharacter (edit)
 - DisneyCharacter (edit)
 - MythologicalFigure (edit)
 - NarutoCharacter (edit)
 - SoapCharacter (edit)
 - Organisation (edit)
 - Broadcaster (edit)
 - BroadcastNetwork (edit)

. 1111110	Luber	Domini	**************************************	
achievement (edit)	achievement	Person	owl:Thing	
activeYears (edit)	active years	xsd:string		
activeYearsEndDateMgr (edit)	active years end date manager Person		xsd:string	
activeYearsEndYearMgr (edit)	active years end year manager Person		xsd:gYear	
activeYearsStartDateMgr (edit)	active years start date manager Person		xsd:date	
activeYearsStartYearMgr (edit)	active years start year manager Person		xsd:gYear	
activity (edit)	activity Person		owl:Thing	
affair (edit)	affair	Person	xsd:string	
age (edit)	age	Agent	xsd:integer	
agency (edit)	agency	Person	owl:Thing	
allegiance (edit)	allegiance	Person	xsd:string	
almaMater (edit)	alma mater	Person	EducationalInstitution	
announcedFrom (edit)	announcedFrom	Person	Place	
approach (edit)	approach	Person	owl:Thing	
arrestDate (edit)	arrest date	Person	xsd:date	
artPatron (edit)	patron (art)	Agent	Artist	
artisticFunction (edit)	artistic function	Person	xsd:string	
astrologicalSign (edit)	astrological sign	Person	owl:Thing	

awardName

Label

DBpedia SPARQL Endpoints

Three core SPARQL endpoints:

- DBpedia main SPARQL endpoint
 - a) https://dbpedia.org/spargl
 - b) hosts the DBpedia latest core release (tiny diamond, see next slide on the KG diamonds)
 - c) see https://databus.dbpedia.org/dbpedia/collections/latest-core
- 2) Databus SPARQL endpoint
 - a) hosts the data artifacts metadata
 - b) https://databus.dbpedia.org/sparql
- 3) DBpedia Live endpoint*
 - a) serves live extracted data
 - b) http://live.dbpedia.org/sparql

^{*} DBpedia live is under maintenance currently.

The Power of the DBpedia Knowledge Graph

Main SPARQL endpoint: https://dbpedia.org/sparql

Simple example: "persons, their names in English, their birth country and country population"

```
SELECT ?person ?name ?country ?population WHERE {
    ?person a dbo:Person .
    ?person rdfs:label ?name .
    ?person dbo:birthPlace ?country .
    ?country dbo:populationTotal ?population .
    FILTER (langMatches( lang(?name), "en" ) )
}
```

The Power of the DBpedia Knowledge Graph

Main SPARQL endpoint: https://dbpedia.org/sparql

More complex query:

- soccer players,
- born in a country with more than 10 million inhabitants,
- played as goalkeeper
- for a club
- that has a stadium
- with more than 30.000 seats.

The Power of the DBpedia Knowledge Graph

Main SPARQL endpoint: https://dbpedia.org/sparql

```
SELECT DISTINCT ?personIRI ?name ?countryOfBirth ?population ?team ?stadium ?stadiumCapacity
WHERE {
    ?personIRI a dbo:Person.
    ?personIRI rdfs:label ?name .
    ?personIRI dbo:birthPlace ?countryOfBirth .
    ?countryOfBirth dbo:populationTotal ?population .
    ?personIRI dbo:team ?team .
    ?personIRI dbo:position|dbp:position <a href="http://dbpedia.org/resource/Goalkeeper_(association_football">personIRI dbo:position_football</a>)> .
    ?team dbo:stadium ?stadium
    ?stadium dbo:seatingCapacity ?stadiumCapacity .
    FILTER (langMatches( lang(?name), "EN" ) )
    FILTER (?stadiumCapacity > 30000)
    FILTER (?population > 10000000)
} ORDER BY DESC(?stadiumCapacity)
```

30

Q&A

Introduction to Databus Use Cases

by Sebastian Hellmann

Databus Vision

DBpedia Databus tackles the challenges of **data acquisition** and **reuse** by offering a **comprehensive catalog** that simplifies **finding, accessing, and building** on data.

- coded on the pain points, by data engineers, for data engineers
- powers almost every aspect of DBpedia (internally and externally)
- tackles the "Data Quality" challenge

Data Publication Data Usage
Producer, e.g. in-house team, platform Consumers, e.g. web, applications

Point of Truth (Data Quality = Fitness for Use)

Databus - DCAT on Steroids I

Databus - lightweight, scalable, adaptable, powerful Data Catalog Platform

- Open Source (Apache 2) implementation
- Built on Data Catalog Vocabulary (DCAT) W3C standard, but fixes problems in the DCAT model

Importance of Metadata

- Imagine a library without a catalog and systematic numbers on the shelfs
 - Which book should I get? findability
 - Where is the book? accessibility
 - o Operations: borrow / return / add a book
 - Data Quality = Fitness for Use -> Anything that Impacts Usability

Databus - DCAT on Steroids II (Details Matter)

Feb 2020 Jan 2024 2014 DataID - 2024

Feature	DCAT 2	DCAT 3	Databus Ontology	Difference
Abstract Dataset	X	~	✓	same dataset, different version
Versioning	X	~	✓	easier to query versions
Format/Compression	X	X	✓	.csv.gz
SHACL	X	X	✓	validated, consistent fields
Multi-file Distribution	X	X	✓	not only different variants
Identifier Scheme	X	X	✓	navigation & persistence
Collections	Publisher	Publisher	User	usage-centric

> 3 years ahead of DCAT

Databus Use Cases for DBpedia

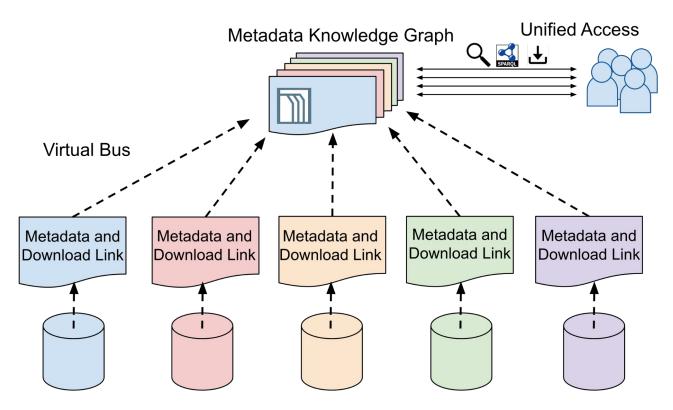
Covered by this tutorial (focused on Data Usage):

- Making your own DBpedia KG collection
- Building data-rich applications with Docker and Databus
 - Virtuoso SPARQL Database, Terminology Server / Lookup, Spotlight
- Building a workflow for text enrichment & entity linking with Spotlight
- Add Custom Metadata and Search (MOSS)
- Continuous Integration (Data production and Quality Control)

Not covered (Creation):

- Creating a Community Extension (links, cleaned data, additional KG data)
- Deploying your own Databus in your project/research group/company

Beyond DBpedia I: APIfying Decentral Files

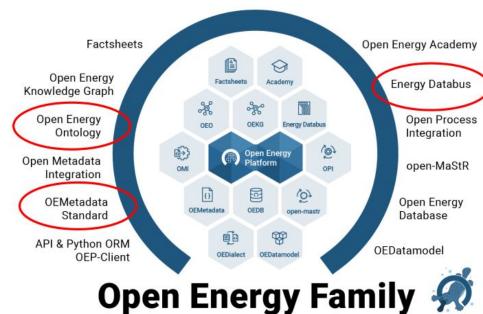


- Crawling, structuring and archiving web data (Archivo)
 - ontologies down? https://databus.dbpedia.org
- Designating a Databus account, e.g. <u>databus.dbpedia.org/ontologies</u>
- Build a feeder that registers data on the bus
- Query with Linked Data, SPARQL, API

curl -H "Accept: application/ld+json" https://databus.dbpedia.org/ontologies/georss.org/georss/2020.08.10-110000

Beyond DBpedia II: Access Control

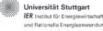
Metadata KG Access: databus.covpu.org


Data Storage Access:

Keycloak JSON Web Token

Towards a Gold Metadata standard in Energy System Research

- The **Open Energy Family** is an initiative for open and FAIR data in the domain of energy systems research
- Development of a FAIR infrastructure within the Open Energy Family



Demonstrator: Publication of a Data Set Using the databus

Goal: Demonstration of the improved visibility and improved discovery of a data set through the registration in the databus Search **CO₂-Emissions of cement** production in Germany 2020-2050 in a THG 80 scenario Query (SparQL) known OEO-term **Open Energy Ontology** https://databus.dbpedia.org **OEO** mapping **Databases** databus link Metadata (.rdf) Registration **Open Energy Platform** https://openenergy-platform.org/ **Publication** Meta data (.json) Data table

Klimaschutzszenario 80 (KS80) BMU. Ökoinstitut

DBpedia Databus + Collections

by Jan Forberg

Chapter Outline

Databus

- Concepts
- Interface
- API
- Deployment and Customization

Collections

- Concept
- The DBpedia Collections
- Creating your own Collection

Databus

- Decentralized RDF-metadata storage
- Holds basic description of files as RDF
 - License information
 - Checksums
 - Formats/Compressions
 - "Structural" Information
- Offers stable identifiers for files
- Extension point for more complex metadata
- The soil on which more RDF-metadata can grow

Databus - Concepts

User

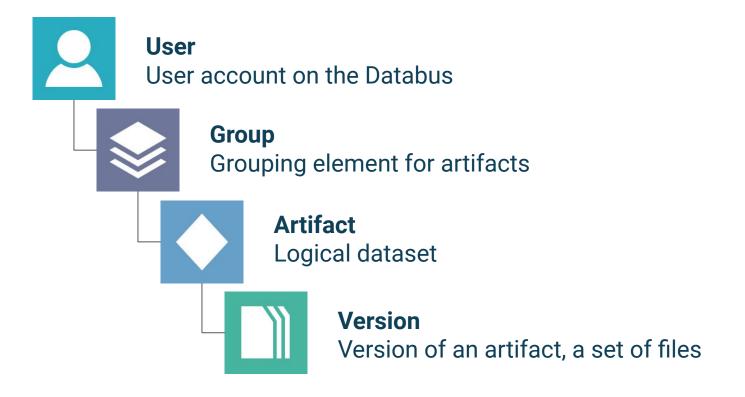
User account on the Databus

Group

Grouping element for artifacts

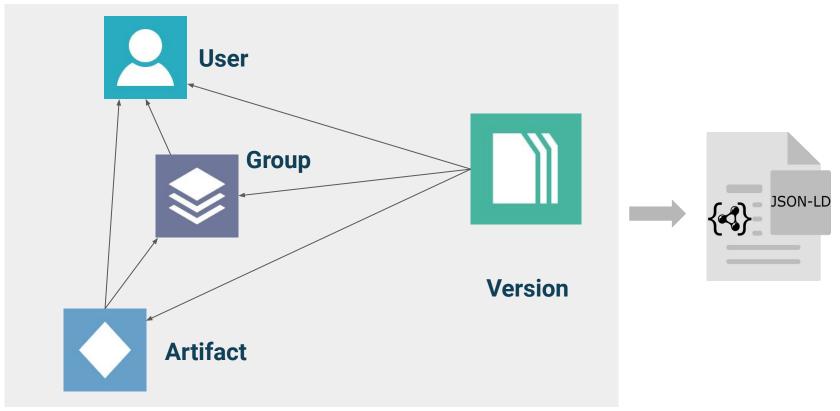
Artifact

Logical dataset, may have multiple versions (e.g. "DBpedia Labels")

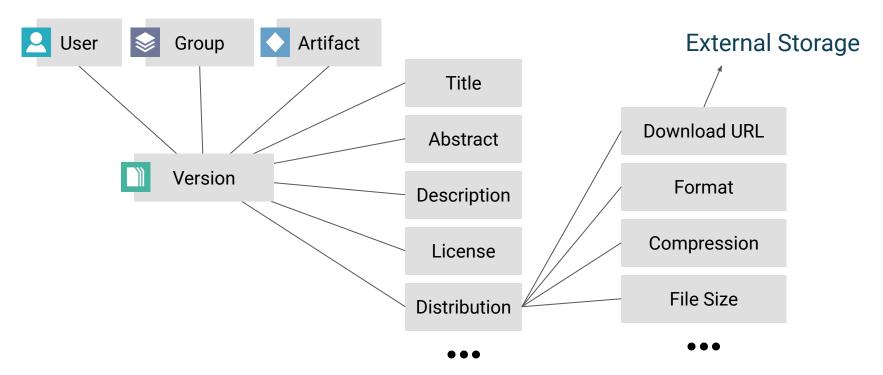


Version

Version of an artifact, a set of files

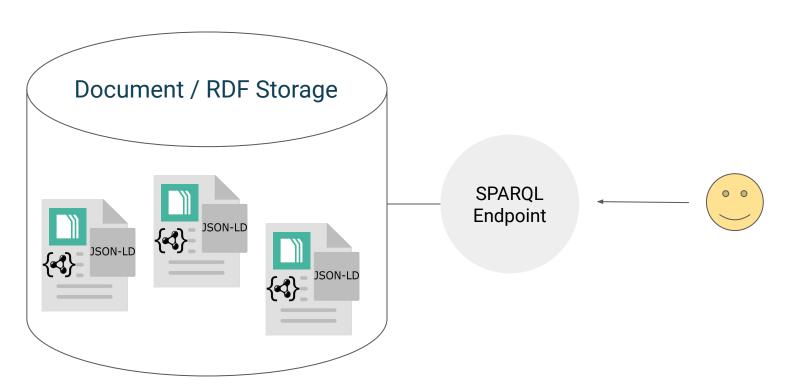

Databus - Hierarchy

Databus - Links




```
"@context": "https://databus.dbpedia.org/res/context.jsonld",
"@graph": [
      "@id": "https://databus.dbpedia.org/dbpedia/prefusion",
      "@type": "Group",
      "account": "https://databus.dbpedia.org/dbpedia"
      "@id": "https://databus.dbpedia.org/dbpedia/prefusion/labels".
      "@tvpe": "Artifact",
      "account": "https://databus.dbpedia.org/dbpedia", ———
      "group": "https://databus.dbpedia.org/dbpedia/prefusion" —
      "@id": "https://databus.dbpedia.org/dbpedia/prefusion/labels/2019.03.01",
      "@type": "Version",
      "title": "DBpedia PreFusion labels",
      "abstract": "DBpedia PreFusion labels",
      "account": "https://databus.dbpedia.org/dbpedia", -
      "group": "https://databus.dbpedia.org/dbpedia/prefusion", ———
      "artifact": "https://databus.dbpedia.org/dbpedia/prefusion/labels", —
      "distribution": [
         "https://databus.dbpedia.org/dbpedia/prefusion/labels/2019.03.01#labels sources=dbpw tag=context.jsonld",
         "https://databus.dbpedia.org/dbpedia/prefusion/labels/2019.03.01#labels sources=dbpw tag=median.tsv.bz2",
         "https://databus.dbpedia.org/dbpedia/prefusion/labels/2019.03.01#labels sources=dbpw.jsonld.bz2"
```

4/


Databus Versions

Storage

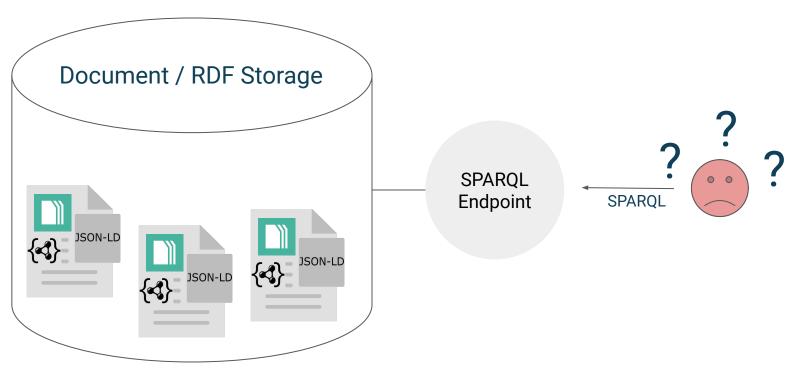
Interface

https://databus.dbpedia.org/

https://tinyurl.com/DBpediaDataWeek2024

Deployment & Customization

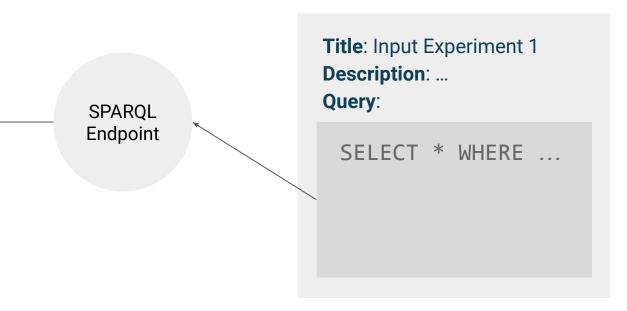
- Dockerized Deployment
 - Virtuoso Store
 - Gstore (adds document-store layer)
 - Databus API and Webapp
 - Lookup (for indexed search)
- Process is documented in the Git Repository
- Need help? Contact us!
- Customization Example: https://dev.databus.dbpedia.org

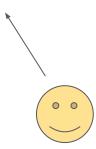


Databus Collections

https://tinyurl.com/DBpediaDataWeek2024

Databus Collections





Databus Collections

https://databus.example.org/janfo/collections/c1

DBpedia Data

https://databus.dbpedia.org/dbpedia/collections/latest-core

https://tinyurl.com/DBpediaDataWeek2024

Our Own Data Collection

https://databus.dbpedia.org/

Making your own DBpedia KG

by Jan Forberg

Preliminaries

- Docker and Docker-Compose
- An internet connection

The Technology

- Virtuoso Opensource Triple Store
 https://hub.docker.com/r/openlink/virtuoso-opensource-7
- Databus Collection Downloader https://github.com/dbpedia/dbpedia-databus-collection-downloader
- DBpedia Virtuoso Quickstarter
 https://github.com/dbpedia/virtuoso-spargl-endpoint-quickstart

Virtuoso Opensource Triple Store

https://hub.docker.com/r/openlink/virtuoso-opensource-7

- Highly scalable and performant triplestore solution.
- Offers robust support for RDF data storage and querying.
- Easily deployable through Docker, enabling seamless integration into various environments.

Databus Collection Downloader

https://github.com/dbpedia/dbpedia-databus-collection-downloader

- Lightweight Downloader
- No File Conversion, Decompression or Mapping (see Databus Client)
- Simple GET requests to retrieve
 - Occidential Collection query
 GET -H "Accept: text/sparql" [COLLECTION_URI]
 - Download URLs
 - > Files

DBpedia Virtuoso Quickstarter

https://github.com/dbpedia/virtuoso-spargl-endpoint-guickstart

- Waits for the Virtuoso to initialize
- Waits for the downloader to finish

Then

- Tells Virtuoso to load local data from disk
- Installs the Virtuoso DBpedia Plugin
 - Includes the DBpedia HTML pages

DEMO TIME

https://tinyurl.com/DBpediaDataWeek2024

Q&A

Lunch Break

... we will continue at 13:30

Session 2: DBpedia and Databus Showcases

Semantic Text Annotation and Search using Spotlight and Databus

CI and Databus publishing using Jenkins

Semantic Text Annotation and Search using DBpedia Spotlight and Databus

by Jan Forberg

Use Cases

- SPARQL/Linked Data: Get more data
- SPARQL/Linked Data: filter documents
- prompt enrichment / RAG

Goal

Improve information requests using the DBpedia Technology Stack:

- DBpedia Databus
- DBpedia Spotlight
- Virtuoso Quickstarter

The Idea

We want to filter documents based on their content. Can we do more than just searching for words?

- Entity Classification and Tagging
- Link to additional data

Let's try to apply **geospatial** queries to topics in text documents!

- Link entities in text to geospatial data
- Retrieve documents with topics about things in a certain area

Tools

- bash-able CLI
- A Github account
- Docker
- Docker Compose
- A web browser

Preparations

- Create a Databus Account
- Create a Databus API Key

Resources

https://github.com/dbpedia/tutorials/tree/master/dataweek24/

RUN:

git clone https://github.com/dbpedia/tutorials.git
cd tutorials/dataweek24/use-case

Tasks

- Create a Data Producer
 - Create file annotations
 - Upload file annotations
 - Publish file annotations on the Databus
- Create a Data Consumer
 - Start a triple store with a mix of our data and DBpedia data

Steps

- Get some text documents
- Annotate the text documents with DBpedia identifiers
- Upload the annotations
- Publish the annotations on our Databus
- Create a **Databus Collection** with annotations and geodata from another Publisher
- Load the Databus Collection into a triple store
- Send a SPARQL query to the triple store

Steps

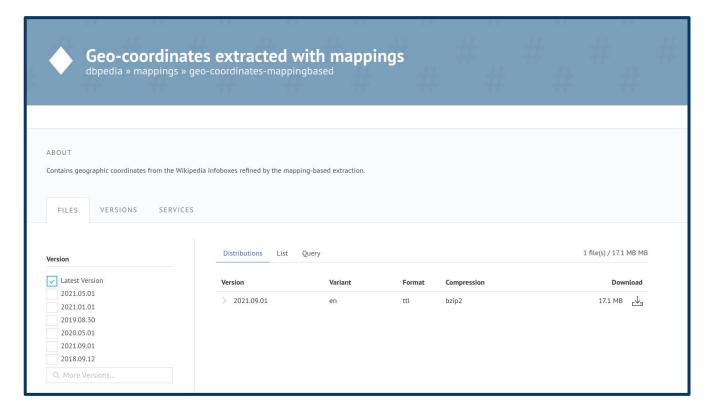
• Get some text **documents** •

Data Producer

- Annotate the text documents with DBpedia identifiers
- Upload the annotations
- Publish the annotations on our Databus
- Create a Databus Collection with annotations and geodata from another Publisher
- Load the Databus Collection into a triple store
- Send a SPARQL query to the triple store

Data Consumer

Choosing the complementary data



- Geo-coordinates!
- Mapping-based or Generic Geo-coordinates?
 - Mappings: more precision
 - Generic: more recall
- Latest version generally a good idea

https://databus.dbpedia.org/dbpedia/mappings/geo-coordinates-mappingbased/

Find some text documents

https://github.com/dbpedia/tutorials/tree/master/dataweek24/use-case/automobile-industry-texts

* we have prepared some

Build a Data Producer

https://github.com/dbpedia/tutorials/blob/master/dataweek24/use-case/annotate.sh

https://tinyurl.com/DBpediaDataWeek2024

Create a Databus Collection

https://databus.dbpedia.org

https://databus.dbpedia.org/USERNAME/collections

Load the Collection to a local triple store.

clone:

https://github.com/dbpedia/virtuoso-sparql-endpoint-quickstart

run:

COLLECTION_URI=https://databus.dbpedia.org/m1ci/collections/dataweek2024 VIRTUOSO_ADMIN_PASSWD=YourSecretPassword docker-compose up

83

Send some queries.

http://localhost:8890/sparql


```
SELECT DISTINCT ?s ?o WHERE {
    ?s <http://www.w3.org/2005/11/its/rdf#taIdentRef> ?o .
}
```

84


```
SELECT * WHERE {
    ?s <http://www.w3.org/2003/01/geo/wgs84_pos#lat> ?o .
}
```

https://tinyurl.com/DBpediaDataWeek2024

86

```
SELECT DISTINCT ?s ?o WHERE {
    ?s <http://www.w3.org/2005/11/its/rdf#taIdentRef> ?o .
    ?o <http://www.w3.org/2003/01/geo/wgs84_pos#lat> ?lat .
    FILTER(?lat > 0)
}
```

https://tinyurl.com/DBpediaDataWeek2024


```
SELECT DISTINCT ?s ?o WHERE {
    ?s <http://www.w3.org/2005/11/its/rdf#taIdentRef> ?o .
    ?o <http://www.w3.org/2003/01/geo/wgs84_pos#long> ?long .
    FILTER(?long > 0 && ?long < 20)
}</pre>
```



```
SELECT DISTINCT ?s ?o ?p ?x WHERE {
    ?s <http://www.w3.org/2005/11/its/rdf#taIdentRef> ?o .
    ?o ?p ?x .
    ?x <http://www.w3.org/2003/01/geo/wgs84_pos#lat> ?lat .
    FILTER(?lat > 60)
}
```

https://tinyurl.com/DBpediaDataWeek2024

Q&A

CI and Databus publishing using Jenkins

by Kirill Yankov

Introduction

Continuous integration and continuous delivery tools help in automation of your software or data release processes.

and others...

91

Introduction

Combination of CI tools and Databus can simplify the automation and make pipelines more reliable, especially when you work with versioned data.

Two main scenarios:

- → you produce data and want to publish it
- → you use some versioned data in your builds (for example: for testing or for generation of your own data)

Introduction

Demo using Jenkins Pipelines

The code from examples is available in our Gitbook @ databus.dbpedia.org

Usage -> Integration with CI: https://dbpedia.gitbook.io/databus/usage/ci

Publishing data in a Databus

Scenario description (what is going on in the pipeline):

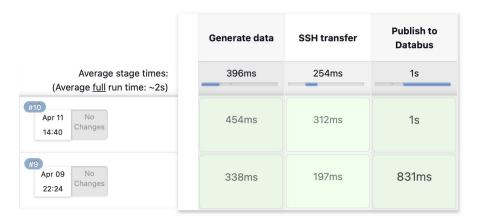
- 1. we generate some data in a pipeline
- 2. make it available for download at some location (uploading it to nginx)
- 3. publish the download link to Databus

Publishing data in a Databus

Demo code: https://dbpedia.gitbook.io/databus/usage/ci#publishing-your-data-files-datasets-into-databus

```
pipeline {
   agent any
   stages {
        stage("Generate data"){
            steps{
               // we create file for demonstration purpose
               script {
                    sh "echo 'Hello World!' > 'jenkins-test-file-${BUILD DATE}-${BUILD NU
        // we transfer the file to a nginx www location, the file gets downloadable.
        stage('SSH transfer') {
            steps([$class: 'BapSshPromotionPublisherPlugin']) {
               sshPublisher(
                    continueOnError: false, failOnError: true,
                    publishers: [
                        sshPublisherDesc(
                            configName: "nginx",
                            verbose: true,
                            transfers: [
                                sshTransfer(sourceFiles: "*.txt", remoteDirectory: "jenki
    // we publish the file to databus specifying its download link
   stage("Publish to Databus"){
            steps{
```

Publishing data in a Databus



Demo in Jenkins

test-databus-publish

Stage View

96

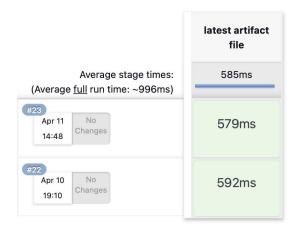
Downloading data from Databus

Pipeline scenario description:

- 1. we have some artifact published in databus
- 2. we execute a SPARQL query in Databus SPARQL endpoint to retrieve links for downloading files of an artifact
- 3. we use download link to download the artifacts (for example with curl)

Downloading data from Databus

Demo code: https://dbpedia.gitbook.io/databus/usage/ci#downloading-data-files-datasets-from-databus


```
pipeline {
    agent any
    stages {
    stage("latest artifact file"){
        steps{
            script{
                def body = req(
                        "https://databus.dbpedia.org/kikiriki/jenkins/jenkins"
                // wrap in a json (x-www-urlencoded also works)
                def jsonBody = new groovy.json.JsonBuilder(query: body).toPrettyString()
                echo "Query is: \n${body}"
                // send post http-request to a databus SPARQL endpoint
                def response = httpRequest validResponseCodes: "200",
                    consoleLogResponseBody: true,
                    httpMode: 'POST', quiet: true,
                    requestBody: jsonBody,
                url: "https://databus.dbpedia.org/sparql",
                 customHeaders:[
                     [name: "Content-Type", value: "application/json"],
                     [name: "Accept", value: "text/csv"]
                // if we configure Accept: text/csv the endpoint returns this:
                // "https://databus.dbpedia.org/kikiriki/jenkins/jenkins/2024-04-09-9/je
                echo "Response: ${response.content}"
                // we extract the URI from the response
                 def fn = response.content.split('\n')[1].replaceAll('"', '').trim()
                echo "Download URI: ${fn}"
                // we can use the URI to download the file using curl
                 sh "curl -0 ${fn}"
```

Downloading data from Databus

Demo in jenkins

Stage View

Wrap Up

Databus can be a useful instrument for your CI/CD automation:

- for storing structured metadata about the data you use in pipelines
- for fine-grained and flexible file retrieval using SPARQL queries

The code from the demo is available in our Databus Gitbook

Usage -> Integration with CI: https://dbpedia.gitbook.io/databus/usage/ci

Coffee Break

... we will continue at 15:30

Session 3: DBpedia and Databus Showcases (cont.)

Databus Metadata Overlay Search System (MOSS)

Terminology Server using Databus, Lookup and Archivo

Databus Metadata Overlay Search System (MOSS)

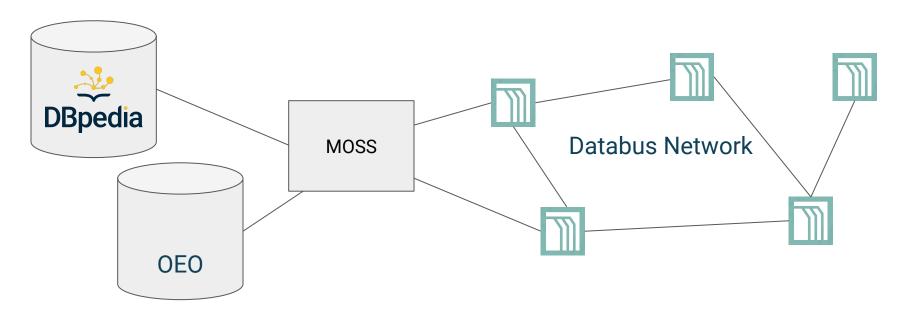
by Jonathan Justavino Lüderitz

Questions

- What is MOSS?
- Why use MOSS?
- How to get started with MOSS?

105

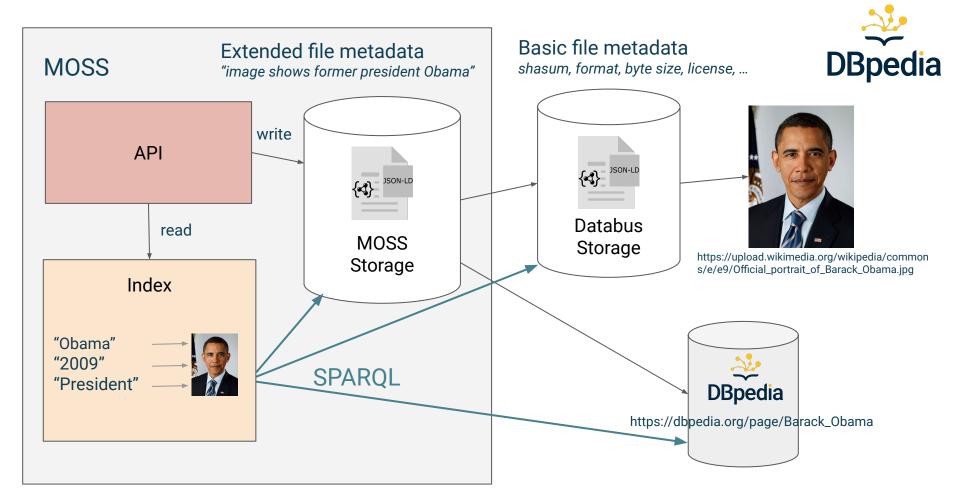
What is MOSS?



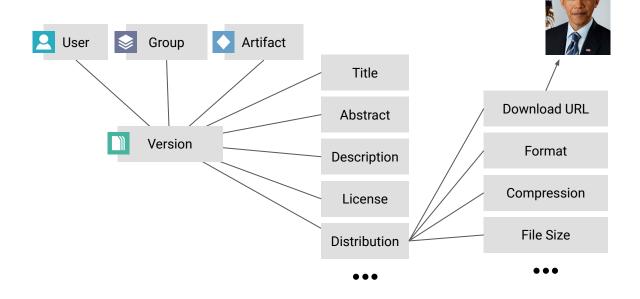
- Metadata Overlay Search System
- Based on Databus technology stack components
 - Gstore
 - Lookup
- Storage and indexer of additional metadata graphs
 - Stores Databus metadata extensions
 - Offers enhanced search over files

Why use MOSS?

- Leverage RDF Metadata Interconnectivity
- Decentralized Integration with the Databus Network

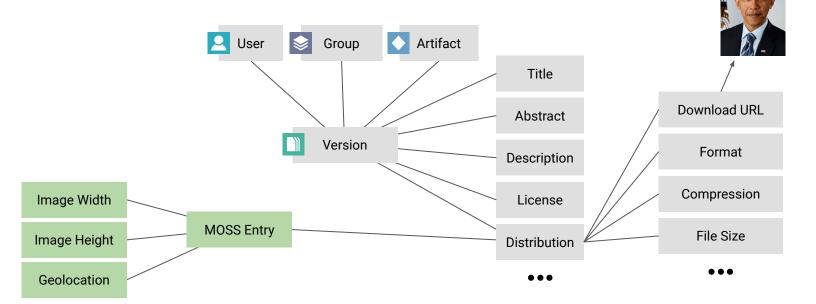

Why use MOSS?

- Databus Metadata is limited
 - Minimal Metadata: Format, Compression, Download URL
 - Need for Additional RDF Metadata Storage
- We might have additional Metadata, e.g.
 - Content Description
 - Formatting Description



"image shows former US president Obama" "image is 1000x2500 pixels"

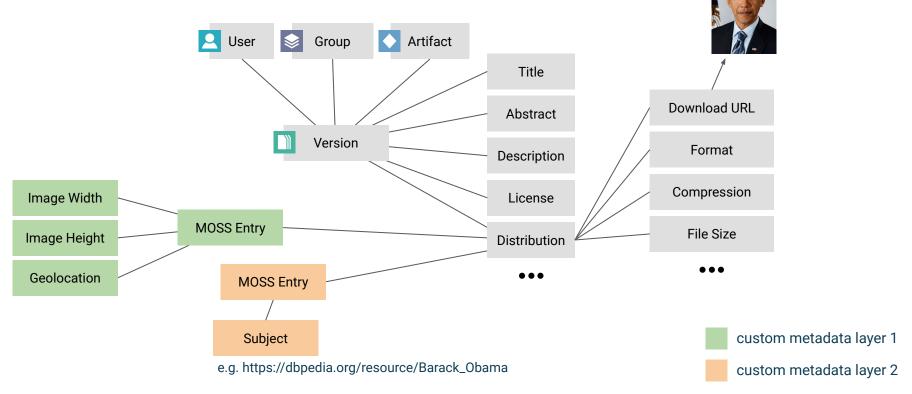
Seamless Metadata Extensions



custom metadata schema 1

custom metadata schema 2

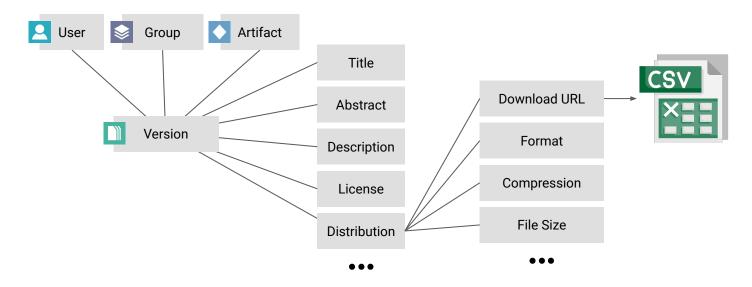
Seamless Metadata Extensions



custom metadata schema 1

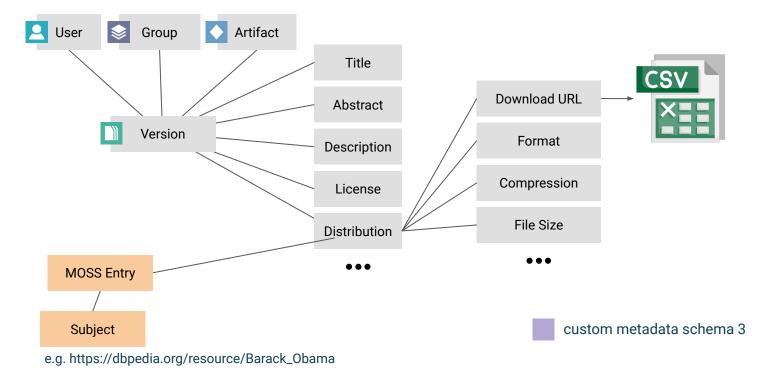
custom metadata schema 2

Seamless Metadata Extensions



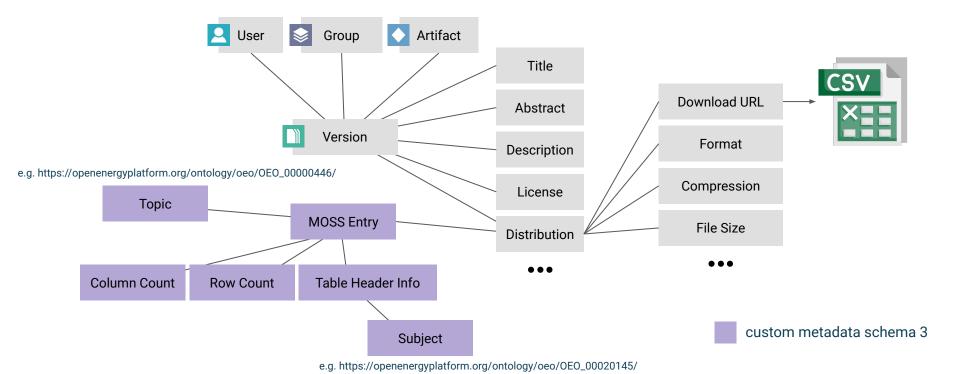
112

Seamless Metadata Extensions (Example 2)



custom metadata schema 3

Seamless Metadata Extensions (Example 2)


114

https://tinyurl.com/DBpediaDataWeek2024

Seamless Metadata Extensions (Example 2)

https://tinyurl.com/DBpediaDataWeek2024

 Deploy a MOSS instance https://github.com/dbpedia/databus-moss/tree/dev

- Deploy a MOSS instance https://github.com/dbpedia/databus-moss/tree/dev
- Add your metadata

- Deploy a MOSS instance https://github.com/dbpedia/databus-moss/tree/dev
- Add your metadata

Convert own Metadata to RDF (e.g. JSON to JSONLD)

Add link to Databus entry

Store data in MOSS

- Deploy a MOSS instance <u>https://github.com/dbpedia/databus-moss/tree/dev</u>
- Add your metadata
- OPTIONAL: Add additional RDF data (e.g. an ontology)

- Deploy a MOSS instance <u>https://github.com/dbpedia/databus-moss/tree/dev</u>
- Add your metadata
- OPTIONAL: Add additional RDF data (e.g. an ontology)
- Add Indexer for your Metadata format
 - Can index any RDF metadata schema
 - o Can index as many schema as needed
 - Can include additional RDF during indexing

How to MOSS?

• Enjoy great search results:

DEMO TIME

https://tinyurl.com/DBpediaDataWeek2024

Capabilities of MOSS

- Storage for structured metadata
- Automated, configurable indexing of heterogeneous metadata
- Potential for advanced data retrieval via SPARQL
- Built-in flexible text search engine

- Future Work:
 - Collaborative Editing of Metadata (Wiki Approach)

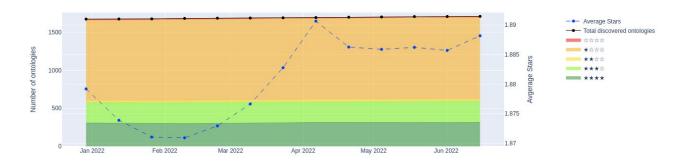
Conclusion

- MOSS Enhances Databus Metadata
- Facilitates Richer Metadata Storage
- Enables Advanced Data Retrieval and Search

Q&A

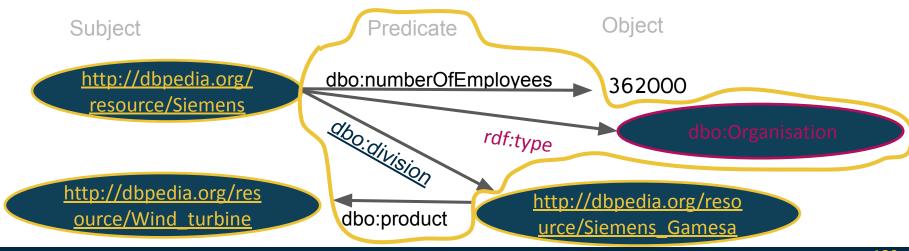
Terminology Server using Databus, Lookup and Archivo

by Johannes Frey


DBpedia Archivo

Augmented Ontology Archive

DBpedia Archivo in a nutshell


- Augmented Ontology Archive for Improving FAIRness of OWL Ontologies & SKOS concept schemes
- fully automated: discovery, versioning & testing for web-scale crawling
- unified + persistent access to ontology (meta)data >1800 Ontologies → the most exhaustive unified ontology space
- augmentation with different serialization formats, LODE docu, stats, reports
- 4-star rating and badges measure fitness for use fundamental FAIRness

Basics: LOD & Ontologies

- Ontologies provide identifier spaces for terms schema information for properties and classes of Linked Open Data (distributed KGs)
- "Common language": ontologies reuse and specialize/generalize from existings terms in other ontologies → interoperability (matching on different granularity levels)

Motivation: Importance of Ontologies

Ontologies provide context crucial for interpretation and use of LOD

- Declaration of identifiers (what are valid properties / classes)
- Basic schema information (e.g. Object vs. Datatype property)
- Human readable semantics (e.g. label, comments, definition)
- Interoperability information to other ontologies (e.g. equivalentClass)
- Formalizes impl. knowledge for machines (e.g. subClassOf / subPropertyOf)

→ important artifact for reprod. experiments & workflows that are based on LOD

130

Motivation: Access to Ontologies affects Reprod.

Excerpt of rdfs:subClassOf (is-A) hierarchy DBpedia Ontology

```
— owl:Thing□ dbo:Person□ dbo:Scientist□ dbo:Professor
```

Example analysis SPARQL query using ont.

```
SELECT (count(distinct ?s) as ?cnt)
WHERE {
    ?subType rdfs:subClassOf* ?type. # infer types;
    VALUES ?type {
        <http://dbpedia.org/ontology/Person>
        <http://dbpedia.org/ontology/Organisation>
    }
    ?s a ?subType
}
```

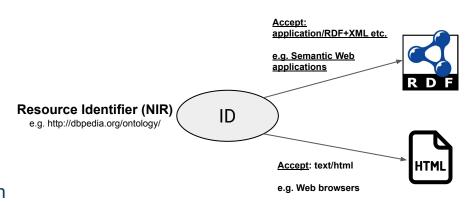
Example Knowledge Graph

```
:JF a dbo:Person
:ER a dbo:Professor
```

(FAIRness) Problems of Ontologies

FAIR recursion problem (I2): FAIR (meta)data needs FAIR vocabularies & ontologies

Ontology Access Problems:

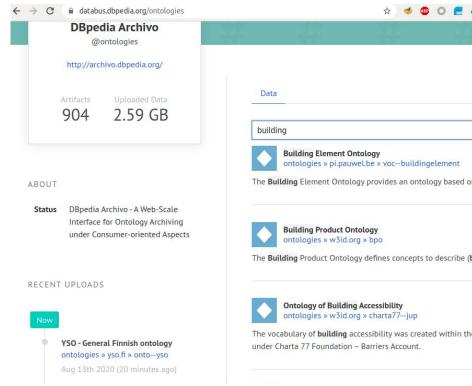

- Incorrect linked data deployment
- Unavailable/unresolvable ontologies

Ontology Interoperability + Reusability Problems:

- Missing / unclear / bad licensing
- File parsing errors / warnings
- Logical inconsistencies
- Bad/incomplete basic metadata /documentation

Findability

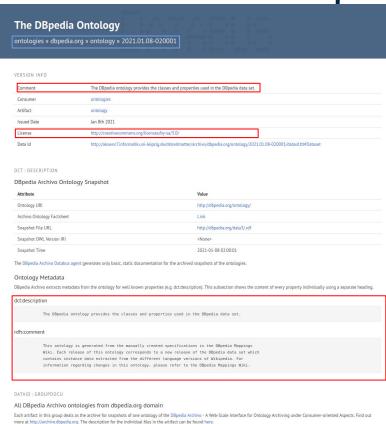
- no stable citation (ID) of a particular version of an ontology → missing terms due to evolution
- search for FAIR ontologies ??


Archivo: An Ont. Interf. on DBpedia Databus

Solution: a web-scale *Augmented Ontology Archive* offering a *unified interface* for ontology consumption

Archivo is a <u>dedicated publishing agent</u> (user) on DBpedia Databus

- → persistent, unified versioning & archiving of ontologies based on Databus IDs
- → access archiving metadata via SPARQL & Linked Data

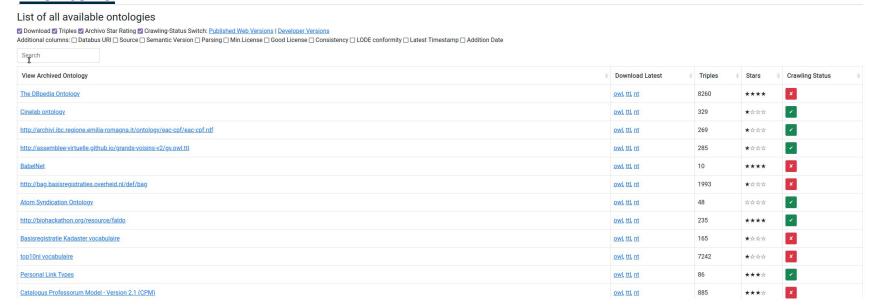


https://tinyurl.com/DBpediaDataWeek2024

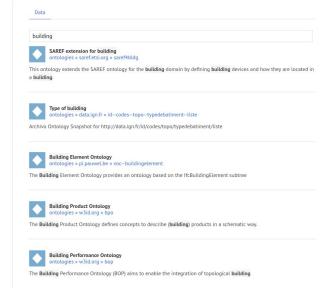
Archivo Ontologies on the Databus

- Creates Databus IDs based on the ontology IRI for identification:
 - publisher → dedicated Databus agent "ontologies"
 - group → domain of the ontology
 - artifact → path of IRI
 - version → timestamp of discovery/update

Maps multiple Ontology metadata properties to annotate ontologies on the Databus

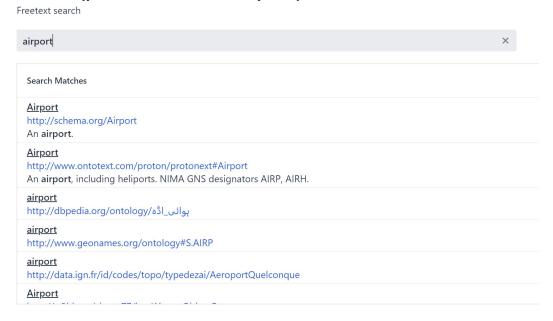



 Search/Filter by Name and Sort via Ontology Overview Table on Archivo Web Frontend

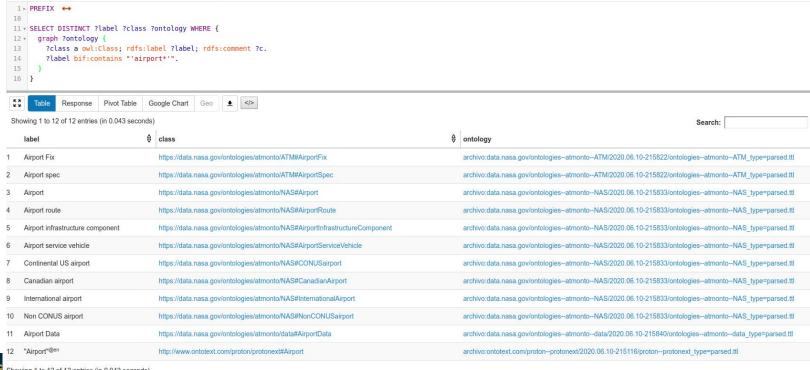


• search on Title or Core Ontology Metadata: via Databus <u>SPARQL</u>, or via

Databus Search



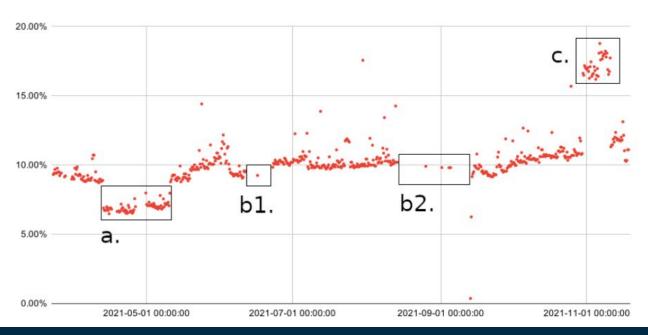
Searching for Terms from Ontologies (A)


Ranked Fuzzy Term Search via (Lucene) Index powered by DBpedia Lookup indexing configuration (<u>public service alpha</u>)

Searching for Terms from Ontologies (B)

Term Search via (self-hosted) SPARQL Index on full Ontology Content

Accessing Ontologies



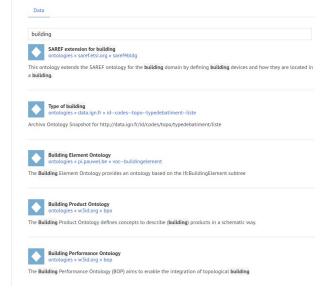
Ontology Accessibility Failures

Fraction of ontologies that failed in a crawling window normalized by the number of ontologies archived at that time

Acc. Failure Duration Classes

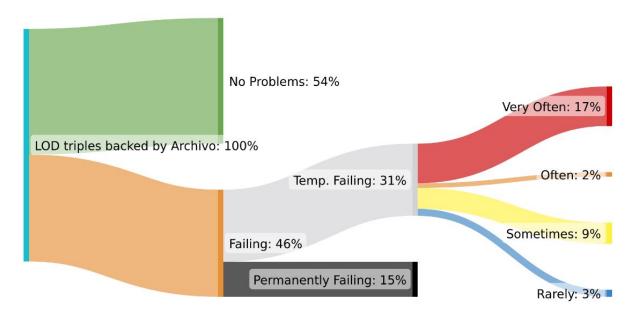
normalized no. of failed crawls by no. of all crawl attempts for that ontology

	Failure Classes			Temp. Failing classes			
	all onts	all failing	temp. failing	[0.01,5)%	[5,25)%	[25,75)%	[75,100)%
Min	0.00%	0.50%	0.50%	0.50%	5.15%	26.87%	75.12%
Q1	0.00%	1.00%	1.00%	0.50%	6.47%	32.84%	88.56%
Med	0.50%	4.98%	3.72%	1.00%	7.46%	36.32%	88.56%
Q3	5.97%	12.19%	7.96%	1.99%	10.45%	69.40%	89.90%
Max	100.00%	100.00%	99.00%	4.98%	24.88%	74.62%	99.00%
Avg	10.64%	19.67%	12.20%	1.59%	9.17%	47.27%	88.90%
#	1439	775	709	394	224	51	40
% all	100.00%	53.86%	49.27%	27.38%	15.57%	3.54%	2.78%
% tmp	-	-	100.00%	55.57%	31.59%	7.19%	5.64%
			* ‡				


 \rightarrow 66 (4.6%) perm. failing

• search on Title or Ontology Metadata: via Databus <u>SPARQL</u>, or via Databus

Databus Search



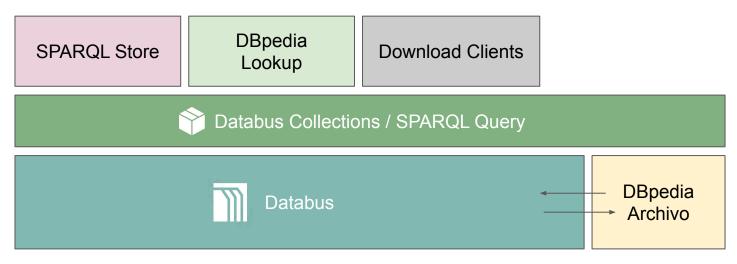
Archivo Impact: Breakdown for backed triples

Fraction of LOD-a-lot triples covered by Archivo, categorized based on the accessibility class of the ontology that defines the term

Accessing 1 Ontology via Archivo API

- Access to all persisted snapshots of any ontology version regardless their current accessibility
- More robust and failure-tolerant
 - parsed versions based on recoverable best-effort crawling circumventing several deployment bugs
- One REST request:
 - requires Ontology NIR
 - Optionally version (defaults to latest timestamp)

http://archivo.dbpedia.org/download? o={ontology-URI} v={version}


e.g. http://archivo.dbpedia.org/download?o=http://datashapes.org/dash&v=2020.07.16-115638

¹more at https://archivo.dbpedia.org/api

Access via Databus Technology Stack

- Several self-hosted "one-click" deployment services of DBpedia Tech stack can be used with DBpedia Archivo
- Ontologies can be fed into application via Collection IDs (custom or official ones)

https://tinyurl.com/DBpediaDataWeek2024

Tech Stack: Load Ont. into SPARQL endpoint

- 1. Create or select an <u>existing Collection</u> with Archivo ontologies
- 2. "One-click-load" the Collection in a local SPARQL endpoint

```
git clone https://github.com/dbpedia/virtuoso-sparql-endpoint-quickstart.git
cd virtuoso-sparql-endpoint-quickstart
COLLECTION_URI=https://databus.dbpedia.org/denis/collections/latest_ontologies_as
_nt_sample VIRTUOSO_ADMIN_PASSWD=secret docker-compose up
```

Useful collections:

• latest parsed ont. as turtle files: https://databus.dbpedia.org/jfrey/collections/archivo-latest-ontology-snapshots

Easy Download of Collections from Code

Accessing all (or variable subset of) Ontologies:

- Use or create collection (or custom SPARQL query)
- Execute query via HTTP
- Loop over Databus file IDs and fetch them

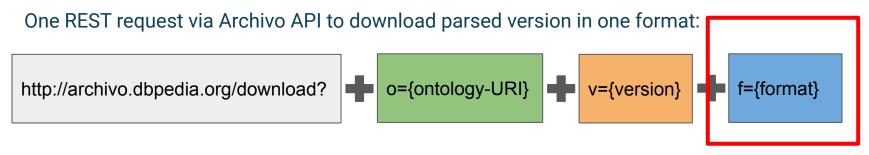
```
query=$(curl -H "Accept:text/sparql" https://databus.dbpedia.org/denis/collections/latest_ontologies_as_nt)
files=$(curl -H "Accept: text/csv" --data-urlencode "query=${query}" https://databus.dbpedia.org/sparql | tail -n+2 | sed 's/"//g')
while IFS= read -r file; do wget $file; done <<< "$files"</pre>
```

Future Work GSOC24 proposal

Goal: "Plug-and-play" Linked Data Resolution of Ontology (Terms) in a deterministic/controllable way based on ontology snapshots hosted in Archivo

- (transparent) ontology time machine proxy
 - o time-based mode: serve versions archived for a certain point in time
 - dependent-lock based mode: serve specific versions based on a local manifest or manifest in (transitively) included ontologies
 - failover mode: redirect to the latest archived version in the event that an ontology is not available anymore
- realize "dependency package manager" with lockfile option
- vocabulary to specify dependencies for ontology publishers

Interoperable & Reusable Ontologies



Ontology Format Interoperability

Common parsed serialisations: RDF+XML,
 Turtle and N-Triples on Databus and API

e.g. https://archivo.dbpedia.org/download?o=http%3A//www.georss.org/georss/&v=2020.08.10-110000&f=ttl

Measuring and Improving I+R via Archivo UI

152

given title:

TREE

given comment: Archivo Ontology Snapshot for https://w3id.org/tree#Ontology

Ontology URI	First Discovery	Discovery Source	Databus Artifact	Accessability?
https://w3id.org/tree#Ontology	2020-05-07 12:31:26	prefix.cc	<u>Link</u>	~

Snapshots & Star Rating Application Compliance

Version Snapshots and Archivo Star Rating

Every row in the table stands for one version snapshot of the ontology.

Archivo ★'s measure basic compliance and interoperability of ontologies. Hover over the headers for further information.

					Archivo Stars Baseline		Good Practice Stars	
Snapshot Details?	Triples?	Download	Semantic Version?	Stars	★ Retrieval & Parsing?	★ License I?	★ License II?	★ Consistency?
2020.12.30-184654	132	owl, ttl, nt	3.0.0	*****		x	x	*
2020.11.12-184942	132	owl, ttl, nt	2.0.2	★☆☆☆	×	×	x	*
2020.11.06-183937	135	owl, ttl, nt	2.0.1	★☆☆☆	·	×	x	*
2020.10.27-204202	139	owl, ttl, nt	2.0.0	★☆☆☆	·	×	×	*
2020.06.11-103816	114	owl, ttl, nt	1.0.0	****	-	x	x	·

https://tinyurl.com/DBpediaDataWeek2024

Debug common Ontology Pitfalls

Accessibility problems with correct ontology deployment:

Testing / Reporting during the manual inclusion request of an ontology

or crawling update status Error log **Databus Artifact** Ontology URI First Discovery Discovery Source Parsing with header application/rdf+xml Not Accessible http://babelnet.org/rdf/ 2020-07-17 01:00:19 prefix.cc Link Status 503 Parsing with header application/ntriples Not Accessible -Status 503 Parsing with header text/turtle Not Accessible - Status 503

The Ontology has been rejected!

Check out the log below for the reason. Click on the boxes for further details!

Note that orange/red panels are not necessarily critical but we suggest fixing them in the future.

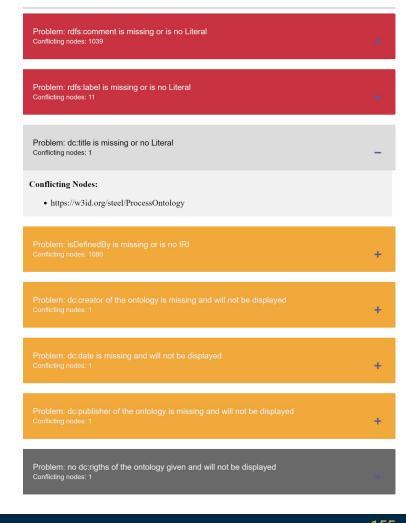
Processing log:

Debug common Ontology Pitfalls

- ontology star rating for (automated) (re)usability
 - testing parsing, license information and logical consistency

					Archivo Stars I	Baseline	Good I	Practice Stars
Snapshot Details?	Triples?	Download	Semantic Version?	Stars	★ Retrieval & Parsing?	★ License I?	★ License II?	★ Consistency?
2020.06.10-183859	26	owl, ttl, nt	1.0.0	***	X	✓	X	✓

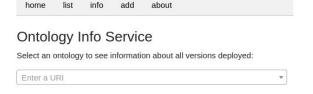
• Detailed error message on hover of error


				Error log	Good Practice Stars			
Snapshot Details?	Triples?	Download	Semantic Version?	Stars	★ Ref	rapper: Error X M L parser	★ License II?	★ Consistency?
2020.06.10-183859	9 🗐 26 owl, ttl, nt 1.0.0 ★☆☆☆ 🗶 error: Entity'copy'notdefi	X	✓					
						rsererror: Opening and end ing tag mis match: divline 0 and span		

Analyze (Re)usability

- extensible SHACL library testing application compliance (fitness for use)
- Currently 2 badges
 - Metadata fitness for automatic LODE documentation
 - Metadata compliance to Archivo itself

- Detailed (machine readable!) reports of issues for each badge
- Categorized by issue classes
 - Severe / required info missing
 - o optional but recommended / useful
 - Optional rather informative



https://tinyurl.com/DBpediaDataWeek2024 155

Archivo: Ontology FAIRness Testing

DASH Data Shapes Library

Archvio Ontology Snapshot for http://datashapes.org/dash

General Information:

First Discovery	2020.05.07; 16:16:4				
Discovery Source	prefix.cc				
Databus-Artifact	Link				

Versions:

Click the version-link to check out the release on the databus for further information

•	Consumer-oriented star rating measuring aspects of
	FAIRness and fitness for automatic use

- Linked Data retrieval & RDF parsing test
- OWL API consistency test
- extendible SHACL-based test library (e.g. checks for license statement and basic relevant metadata)

Version	Triples	Stars	Semantic Version	★ Retrieval & Parsing	★ License I	★ License II	★ Consistency	Lode-Conform
2020-07-16 11:56:03	1572	★☆☆☆	2.1.0	~	×	×	•	×
2020-07-11 22:42:01	1551	★☆☆☆	2.0.0	•	×	×	-	×
2020-06-10 18:13:02	1279	★☆☆☆	1.0.0	v	×	×	1	×

Archivo Stars

Baseline:

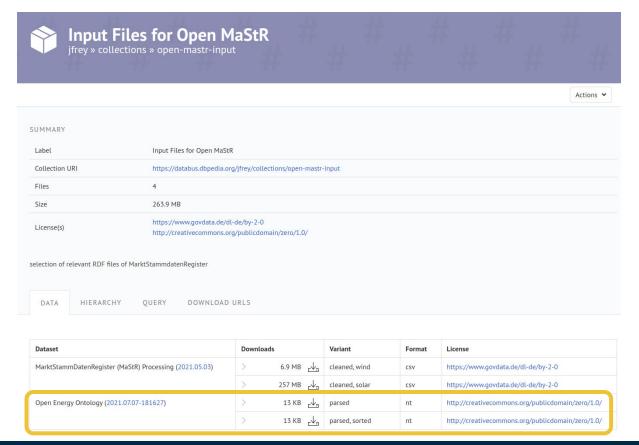
- ontology is retrievable without errors and parses
- some kind of license can be found in metadata

Fitness for use stars:

- | license is given with dct:license and is an IRI
- ontology is logically consistent

- not parseable
- no license provided
- (maybe) logically inconsistent

2x Ontology


- parseable & retrievable
- some license detected
- license only human readable or not unified
- logically inconsistent

4x Ontology

- parseable & retrievable
- unified license URI
- logically consistent

Archivo + Databus: Ontology Dependency/Citation

Ship datasets / apps with the most recent or specific version of ontologies using e.g. Databus collections

- → clear **provenance**
- → stable vs. updateable applications
- → reproducible experiments

Wrap Up: Archivo Workflow and Features

Automatic Ontology Discovery

weekly crawl of:

- ontology repositories
- classes/properties used on the Databus
- IRIs used in ontologies
- user suggestions

Ontology Augmentation

- multiple serialisation formats
- Test reports with a SHACL library
- Star Rating
- semantic versioning
- enhancement with Feature Plugins

Persistence on the Databus

- stable abstract identifiers for ontologies
- (metadata) access via SPARQL/Linked Data

Ontology Versioning

- crawls every 8 hours
- For dev ontologies every 5 minutes

159

Summary

Archivo ...

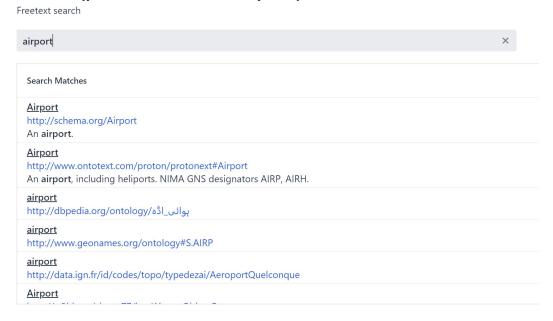
- ... is an exhaustive unified space for ontologies
- ... provides findable and easily accessible vocabularies
- ... has a star rating and other tests measuring the interoperability and (re)usabilty of ontologies
- ... tries to encourage following community standards for ontology metadata

Contribute to Archivo and better Linked Open Data

- add not-yet-discovered ontologies (esp. ones you use)
 - Check and report issues to maintainers of ontologies you use (point to Archivo issues)
- check your own ontology and their rating and improve them to get ★★★★

- add SHACL tests checking for the compliance to a certain service
- suggest new features/measurements/tests by creating an issue at the <u>github</u>
 <u>repository</u>

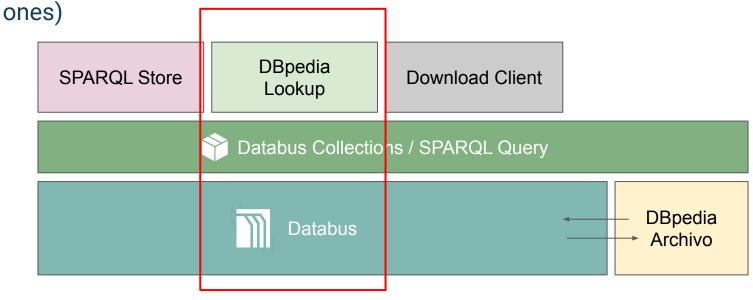
161


Terminology Server using Databus, Lookup and Archivo

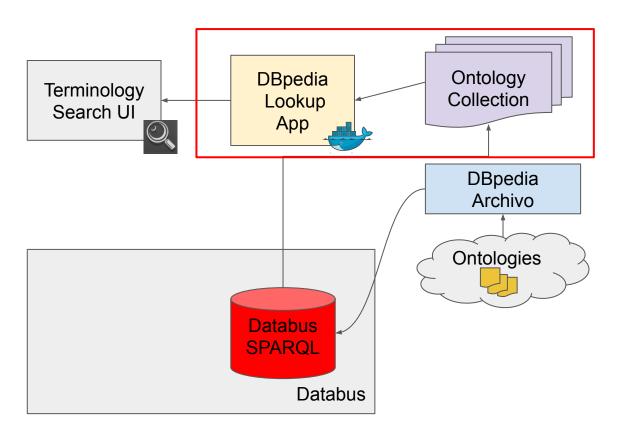
by Johannes Frey

Searching for Terms from Ontologies (A)

Ranked Fuzzy Term Search via (Lucene) Index powered by DBpedia Lookup indexing configuration (<u>public service alpha</u>)

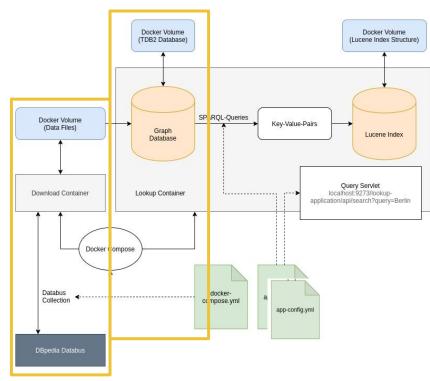


DBpedia Technology Stack


 Several "one-click" of deployment services of DBpedia Tech stack can be used with DBpedia Archivo

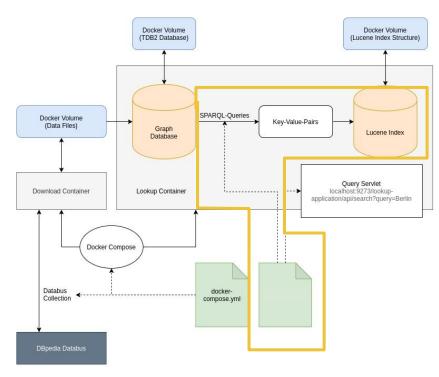
Ontologies can be fed into application via Collection ID (custom or official

Terminology Server Workflow Overview



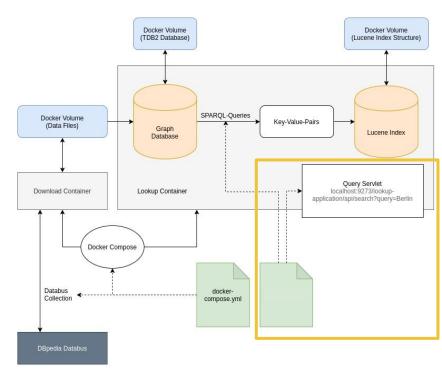
On-demand Lookup (Fetch Data)

- Entity keyword/term search for datasets
- Composite of:
 - Download Container (optional now builtin)
 - Lookup Container (Application Container)
- by default data to be indexed is loaded into an (on-disk) graph database via specifying a Databus Collection


https://github.com/dbpedia/dbpedia-lookup

On-demand Lookup: (Indexing)

- Key-Value pairs are extracted via SPARQL queries to create a reverse index
- Customizable in YML file
- default configuration is provided that works out of the box for a plethora of RDF datasets (uses rdfs:label and rdfs:comment as keywords/"search fields")
- prebuilt indexes for a selection of DBpedia datasets available on Databus



On-demand Lookup (Search)

168

- flexible search/query behaviour (based on Lucene - entities ~ documents)
 - e.g. the public DBpedia Lookup API "prefix search" and "autocompletion" services use same code and data but two different configurations https://lookup.dbpedia.org

https://tinyurl.com/DBpediaDataWeek2024

Let's create an Index on the DBpedia Ontology


```
git clone https://github.com/dbpedia/dbpedia-lookup
cd dbpedia-lookup/lookup
mvn package
EITHER
        cd .. && docker compose up
         java -jar ./target/lookup-1.0-jar-with-dependencies.jar -c ../examples/config.yml
OR
curl --request POST \
--url http://localhost:8082/api/index/run \
--header 'Content-Type: multipart/form-data' \
--form config=@examples/indexing/dbpedia-ontology-collection-indexer.yml
curl http://localhost:8082/api/search\?query\=Wind
```

169

Advantages and Usage Scenarios

- Search on your custom selection of ontologies / private of vocabulary
- Customize the search how you like to improve search results at ease
 - Prefix search
 - Fuzzy search
 - Indexed content and fields
 - o ...
- Quick and automated deployment

We use it for assistance in interfacing KGs with LLMs (e.g. GraphRAG)

Q&A

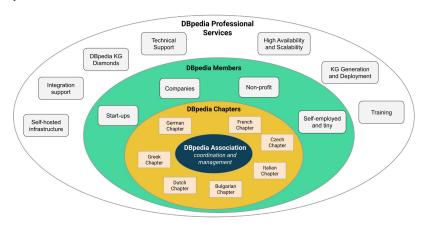
Closing Session

by Milan Dojchinovski

What have you learned

- What is DBpedia
 - history of DBpedia, community, DBpedia KG release process
 - o how a DBpedia triple is born
 - ontology, endpoints
- The DBpedia technology stack
 - DBpedia Databus and collections
 - DBpedia Spotlight
 - DBpedia Lookup
- best practices via several practical showcases
 - Semantic Indexing and Search using Databus and DBpedia Spotlight
 - CI and Databus publishing using Jenkins
 - Databus Metadata Overlay Search System
 - Terminology Server using DBpedia Lookup

Useful pointers



- Please find more information about DBpedia and the community here: https://www.dbpedia.org/
- Join the DBpedia slack: https://dbpedia-slack.herokuapp.com/
- Join the DBpedia Forum: https://forum.dbpedia.org/
- Sign up for the fabulous DBpedia newsletter: http://eepurl.com/blg3qf

Join DBpedia

- Establish DBpedia chapter
 - https://www.dbpedia.org/members/chapter-overview/
- Become a member
 - https://www.dbpedia.org/members/membership/
 - request material via <u>dbpedia@infai.org</u>
- Get DBpedia professional services
 - training
 - o consulting on your use cases
 - self-hosting DBpedia
 - technical support
 - request material via <u>dbpedia@infai.org</u>

Next events

DBpedia Tutorial at LREC-COOLING 2024, May 20, 2024, Torino, Italy

The DBpedia Databus Tutorial: Increase the Visibility and Usability of Your Data

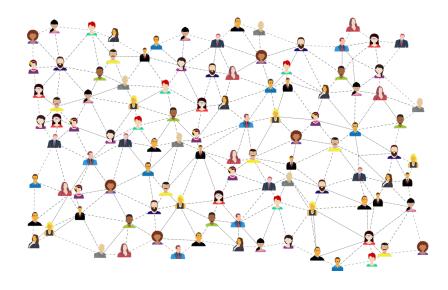
Half day – Afternon

Instructors: Milan Dojchinovski Type: Cutting-Edge Links: Website – Email

Abstract: This half-day tutorial introduces DBpedia Databus (https://databus.dbpedia.org), a FAIR data publishing platform, to address challenges of data producers and data consumers. The tutorial covers management, publishing, and consumption of data on the DBpedia Databus, with an exclusive focus on Linguistic Knowledge Graphs. The tutorial also offers practical insights for knowledge graph stakeholders, aiding data integration and accessibility in the Linked Open Data community. Designed for a diverse audience, it fosters hands-on learning to familiarize participants with the DBpedia Databus technology.

https://tinyurl.com/DBpediaDataWeek2024

DBpedia for Saxony Digital Prize


- DBpedia nominated in the Open Source category
- Voting period: 15-30 April, 2024 at 10:00 a.m.
- Please vote via the participation portal of the Free State of Saxony
 - Link to the Saxon Digital Award 2024 public voting:
 - https://mitdenken.sachsen.de/1040556
- Short films and further information on the nominees
 - the Saxon Digital Prize website
 https://www.digitales.sachsen.de/saechsischer-digitalpreis-2024-5634.html

https://tinyurl.com/DBpediaDataWeek2024

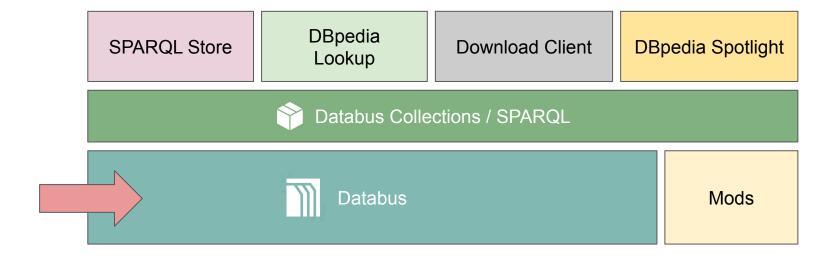
Thank you! Q&A

... final thoughts or questions?

Leftovers everything after this slide will be removed !!!

Part 2: DBpedia Technology Stack Overview and Demo case

by Jan Forberg


Overview

- DBpedia Technology Stack
- DBpedia Databus
 - Core Concepts
 - Collections
 - Publishing to the Databus
- Demo case using the Stack

The DBpedia Technology Stack

- RDF-based metadata registry
- Holds metadata about files
 - Format
 - Compression
 - Size
 - Checksums
 - Download URLs
 - Content-variant information
 - ... and more
- Data-retrieval can be done via SPARQL-queries
- Federated SPARQL queries (SPARQL queries over multiple triple-stores) allow inter-Databus aggregation
- High focus on automatization, interoperability and extensibility

Databus Core Concepts

Databus (Data dependencies) is inspired by Maven (Software dependencies)

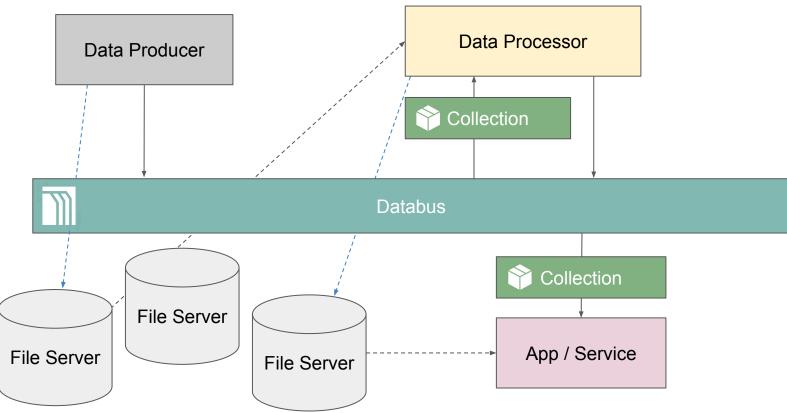
Artifact

gical Dataset (e.g. "All Wikipedia Labels", "Data about Water Turbines"). May have multiple sions and files in different formats, languages, etc.

bup

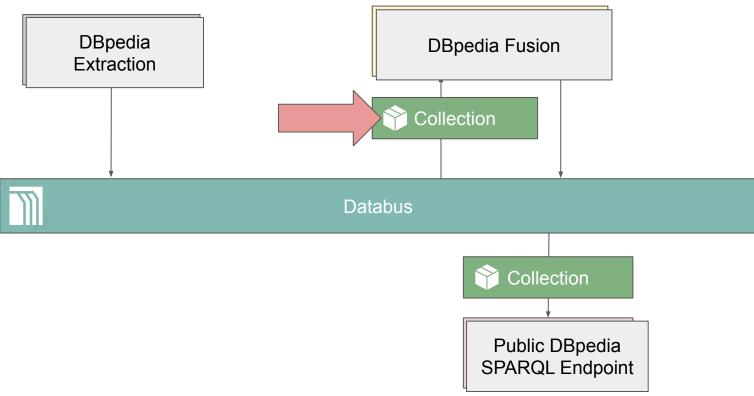
tiple Artifacts grouped together.

Version

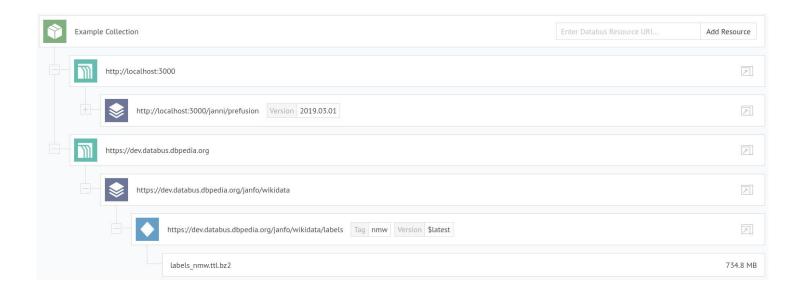

sion of an Artifact. (e.g. "2016-10 release of All Wikipedia Labels")

tald

Metadata document associated with exactly one Group, Artifact and Version

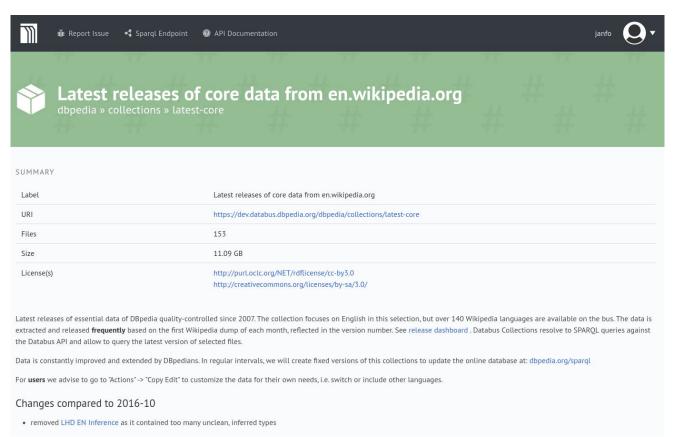

Databus for Data Automatization

Databus for Data Automatization

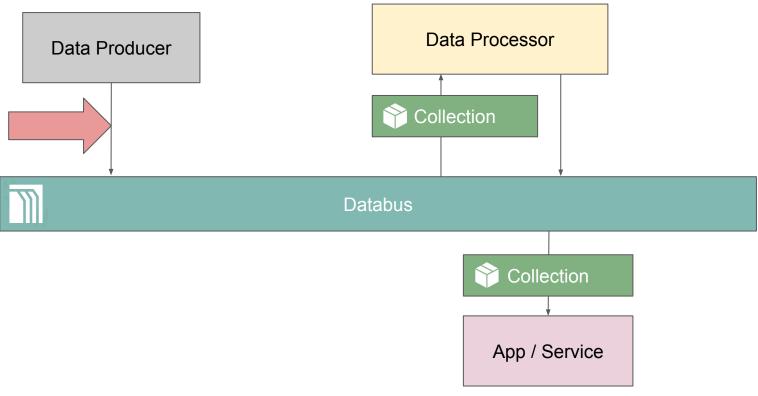

Databus Collections

- The core aggregation and retrieval mechanism of a Databus (abstraction layer for SPARQL)
- Shopping cart for data
- Editor provided with the web-interface

DBpedia Databus Collection Editor




```
1 r PREFIX rdfs: <a href="http://www.w3.org/2000/01/rdf-schema">http://www.w3.org/2000/01/rdf-schema">
 2 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 3 PREFIX dcat: <http://www.w3.org/ns/dcat#>
 4 PREFIX dct: <a href="http://purl.org/dc/terms/">http://purl.org/dc/terms/>
 5 PREFIX dcv: <http://dataid.dbpedia.org/ns/cv#>
 6 PREFIX dataid: <a href="http://dataid.dbpedia.org/ns/core#>">
 7 SELECT ?file WHERE
 8 v {
 9 +
 10
               GRAPH ?q
                    ?dataset dcat:distribution ?distribution .
                    ?distribution dataid:file ?file .
 15
                         ?dataset dataid:group <a href="http://localhost:3000/janni/prefusion">http://localhost:3000/janni/prefusion</a>.
 16 +
                         { ?distribution <a href="http://purl.org/dc/terms/hasVersion">http://purl.org/dc/terms/hasVersion</a> '2019.03.01' . }
 18
19
          }
20
          UNION
                SERVICE <a href="https://dev.databus.dbpedia.org/spargl">https://dev.databus.dbpedia.org/spargl</a>
                    GRAPH ?g
24
 26
                         ?dataset dcat:distribution ?distribution .
                         ?distribution dataid:file ?file .
28 +
                              ?dataset dataid:group <https://dev.databus.dbpedia.org/janfo/wikidata> .
 29
 30 +
                                   ?dataset dataid:artifact <https://dev.databus.dbpedia.org/janfo/wikidata/labels> .
31
                                   { ?distribution <a href="http://dataid.dbpedia.org/ns/cv#tag> 'nmw' ." }
 34 +
                                        ?distribution dct:hasVersion ?version {
                                            SELECT (?v as ?version) {
                                                      ?dataset dataid:artifact <a href="https://dev.databus.dbpedia.org/janfo/wikidata/labels">https://dev.databus.dbpedia.org/janfo/wikidata/labels</a>>.
 38
                                                      ?dataset dct:hasVersion ?v .
 39
                                            } ORDER BY DESC (?version) LIMIT 1
 40
41
42
43
45
47
48 }
```


Databus Collections HTML View

Databus for Data Automatization

Publishing to the Databus

- Extensive API for all Databus interactions
- Inputs based on JSON-LD
- Web UI helps with first steps
- Simple API-key authentication

Creating a Databus Version

- Core piece: Dataset
- Dataset has
 - Title, Abstract, etc.
 - List of Parts
- Each Part describes a file with
 - Format
 - Compression
 - Download URL
 - o .. and more
- Dataset is associated with
 - Account
 - Group
 - Artifact
 - Version

Server-side Auto-completion

- Reduces the amount of redundant information in the input
- Does tedious tasks such as generating checksums
- Creates entries for Groups, Artifacts and Versions


```
"@context": "https://downloads.dbpedia.org/databus/context.jsonld",
"@graph": [
   "@id". "https://dev.databus.dbpedia.org/janfo/generic",
   "@type": "Group",
   "abstract": "Some documentation here. Some documentation here. Some documentation here.",
    "Assription": "Some documentation here, Some documentation here, Some documentation here, Some documentation here,"
          "https://dev.databus.dbpedia.org/janfo/generic/geo-coordinates/2022-04-26#Dataset",
        version" -2:22:04-26"
    itle": "Geo-Coordinates",
    "abstract": "Some documentation here. Some documentation here. Some documentation here. Some documentation here.",
   "Usscription": "Some documentation here. Some documentation here. Some documentation here. Some documentation here.",
   "license": "http://dalicc.net/licenselibrary/AdaptivePublicLicense10",
   "distrubution":
       "@id": "https://dev_datahus.dhpedia.org/janfo/generic/geo-coordinates/2022-04-26#geo-coordinates.ttl.bz2",
       'etype': "Part".
       "file": "https://dev.databus.dbpedia.org/janfo/generic/geo-coordinates/2022-04-26/geo-coordinates.ttl.bz2",
       "formataktension": 'ttl',
       "compression": "bz2",
       "dow:leadURL": "https://downloads.100.dia.org/2016-10/core/geo_coordinates_en.ttl.bz2",
       "LyteSize": 17559369,
       "sha256sum": "1d056c9947f306de85c79cc0304eb038e8b8a1420309d6b6740718571ce46f5f"
```

https://tinyurl.com/DBpediaDataWeek2024

Dataset URI

https://dev.databus.dbpedia.org/janfo/generic/geo-coordinates/2022-04-26#Dataset

Version URI

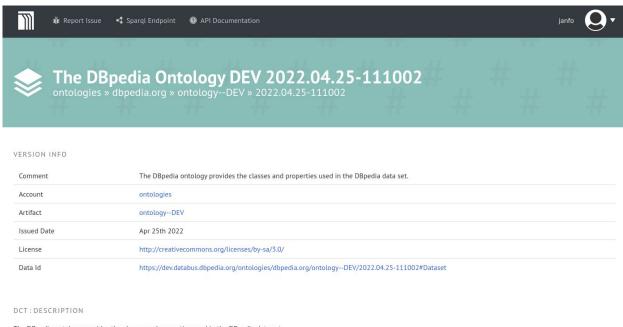
https://dev.databus.dbpedia.org/janfo/generic/geo-coordinates/2022-04-26

Artifact URI

https://dev.databus.dbpedia.org/janfo/generic/geo-coordinates

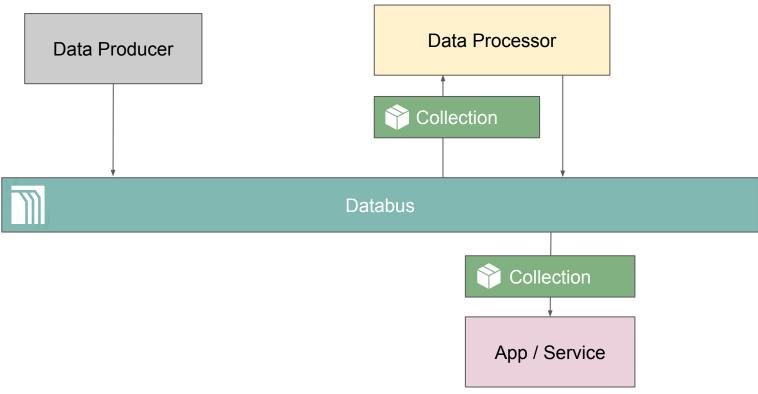
Group URI

https://dev.databus.dbpedia.org/janfo/generic


Account URI

https://dev.databus.dbpedia.org/janfo

Example Result


https://dev.databus.dbpedia.org/ontologies/dbpedia.org/ontology--DEV/2022.04.25-111002

The DBpedia ontology provides the classes and properties used in the DBpedia data set.

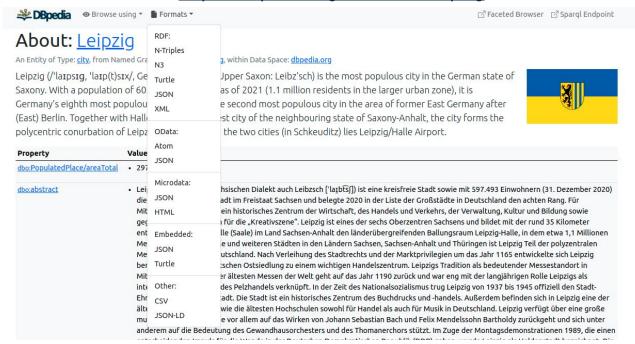
Databus for Data Automatization

Demo Case: Semantic Indexing and Search using the DBpedia technology stack

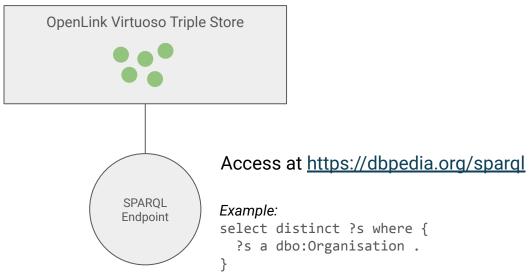
Part 3: Use DBpedia on your local infrastructure

by Johannes Frey

Overview

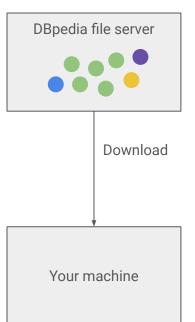

- Option to access / download DBpedia KG
 - Navigating the DBpedia KG on the Databus
- Services deployable on your own infrastructure
 - Databus
 - Lookup
 - Spotlight

Option 0: Linked Data interface via https://dbpedia.org/resource/Leipzig



curl -Lk -H "Accept: application/n-triples" https://dbpedia.org/resource/Leipzig | vim -

https://tinyurl.com/DBpediaDataWeek2024

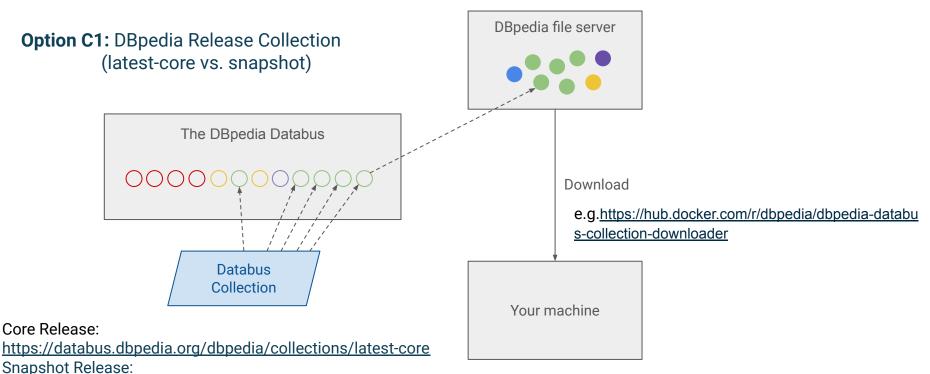

Option A: The official DBpedia KG SPARQL-Endpoint (or <u>endpoints of national DBpedia Chapters</u> or <u>DBpedia Live SPARQL</u>)

YASGUI: https://yasgui.triply.cc/

Option B: Old-school File Directory Download

Access at https://downloads.dbpedia.org

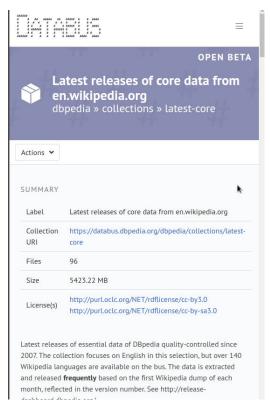
Monthly Modular Extractions (since 2020) https://downloads.dbpedia.org/repo/dbpedia/<module>/<dataset>/<version>


Legacy releases (until 2017) https://downloads.dbpedia.org/<version>/

Index of /repo/dbpedia/

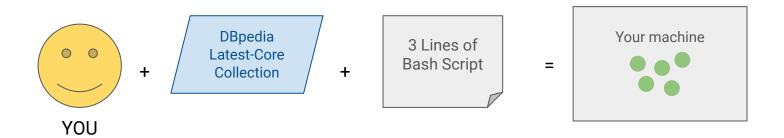
generic/	18-0ct-2021 13:29
mappings/	21-Mar-2020 13:27
spotlight/	25-Mar-2020 22:47
text/	26-Mar-2020 08:15
transition/	18-Dec-2020 14:22
wikidata/	03-May-2020 11:53

https://databus.dbpedia.org/dbpedia/collections/dbpedia-snapshot-2021-09/



https://tinyurl.com/DBpediaDataWeek2024

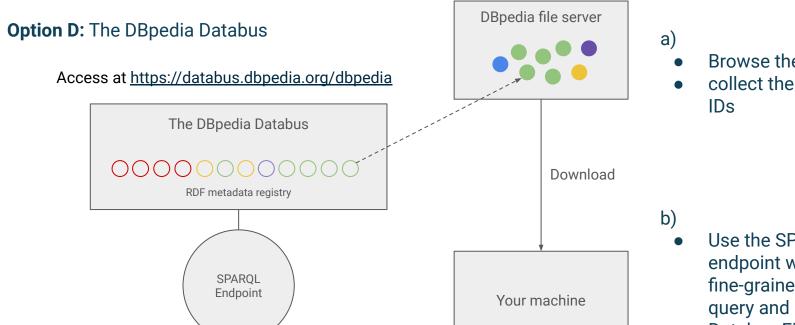
Option C2: Copy and modify a DBpedia Release Collection


Your custom subset of DBpedia KG you need for the task at hand 3 Lines of Your machine **Custom** Bash Collection Script YOU or a comparable amount of LOC in any programming language

211

Option CX: Download Collection: via command line

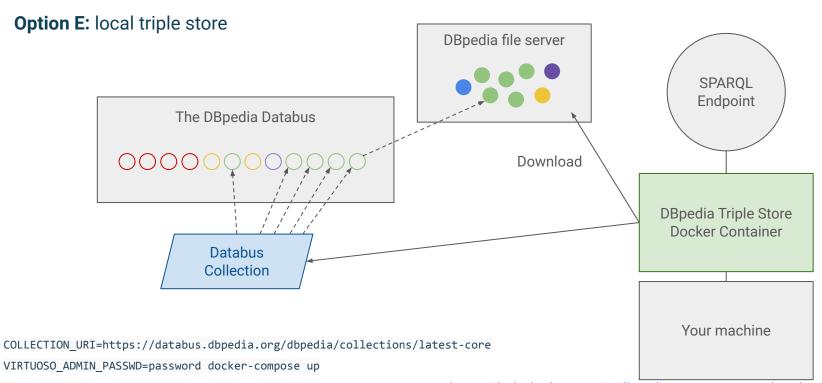
Resolve the Collection ID (retrieve SPARQL query) via *curl* query=\$(curl -kH "Accept:text/sparql" https://databus.dbpedia.org/dbpedia/collections/dbpedia-snapshot-2021-09)


Download the files

files=\$(curl -kH "Accept: text/csv" -data-urlencode "query=\${query}" https://databus.dbpedia.org/repo/sparql | tail -n+2 | sed 's/"//g')

while IFS= read -r file; do echo wget \$file; done <<< "\$files"

Access at https://databus.dbpedia.org/repo/spargl



- Browse the Databus UI
- collect the Databus File

Use the SPARQL endpoint with fine-grained SPARQL query and retrieve the

Databus File IDs

https://hub.docker.com/r/dbpedia/virtuoso-spargl-endpoint-quickstart

DBpedia Databus Identifiers

The Databus offers a clean identifier structure:

https://example.org/janfo/energy/turbines/2022-02-02

Base URL	User	Group	Artifact	Version	
----------	------	-------	----------	---------	--

- Enables queries such as:
 - "Give me all the versions in a group"
 - "Give me the latest version on an artifact"
- Version metadata enables even more fine-grained retrieval

Navigating the DBpedia KG dump structure

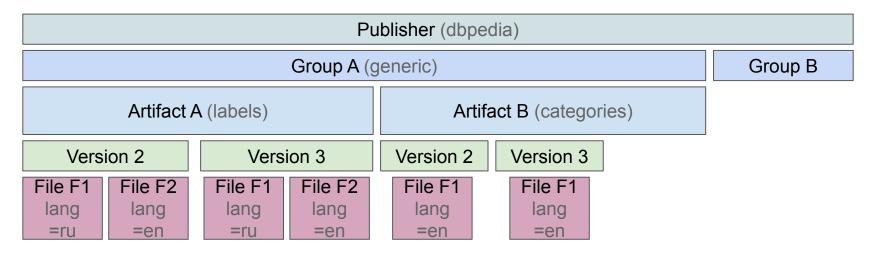
Databus assets are structured hierarchically (similar to maven repositories).

DBpedia KG is published by dbpedia Databus Account

Groups are derived from respective Extraction module:

- generic: Generic Extraction
- mappings: Mapping-based Extraction
- **text:** Text Extraction
- wikidata: Wikidata Extraction

Publisher (dbpedia)						
Group A (generic)	Group B (mappings)					


216

Navigating the DBpedia KG dump structure

A Databus Group bundles multiple Artifacts (abstract dataset)

Can contain files for different *versions* in different *formats*, *compressions*, and content *variants*

Databus Identifier Structure

- Databus URL:
 - https://databus.dbpedia.org
- DBpedia Account URI <u>https://databus.dbpedia.org/dbpedia</u>
- Group URI:
 https://databus.dbpedia.org/dbpedia/generic
- Artifact URI
 https://databus.dbpedia.org/dbpedia/generic/labels
- Version URI
 https://databus.dbpedia.org/dbpedia/generic/labels/2022.04.01

Prominent DBpedia KG Artifacts

- Labels
- Geo-Coordinates
- Instance Types
- Mapping-based Objects / Mapping-based Literals
- DBpedia Ontology
- SameAs Links
- Global IDs

Extraction Artifact: Labels

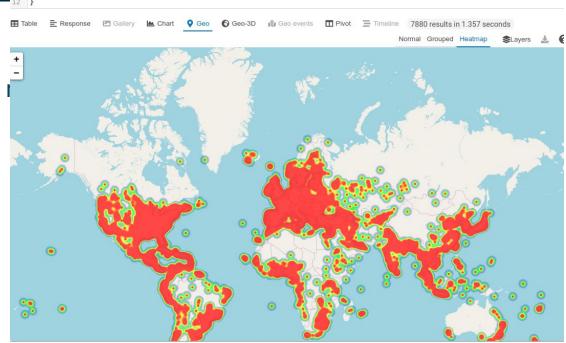
ID: https://databus.dbpedia.org/dbpedia/generic/labels/

content variant dimensions: language

Example applications:

- Human readable names in more than 130 language versions
- Label-based indexing for search
- Creation of semantic dictionaries

Leipzig | Sergen | Kreisfreie Stadt Leipzig | Lajpcigu | Lajpcik | Leipciga | Leipcigas | Leipzig | Leypsiq | Lipcse | Lipcse (Németország) | Lipekika | Lipsia | Lipsk | Lipsko | Läipcig | Léypzig | Sergen | Sergen, Hani | Sipir | Λειψία | Лайпциг | Лајпциг | Лейпзиг | Лейпциг | Лейпцыг | Ліпско | Lшյщдիд | Lшյփдիկ | المنافقة | المنافقة | الإينانية | لاينانية | المنافقة | তাঁ বিষ্ণা ব


Extraction Artifact: Geo-Coordinates

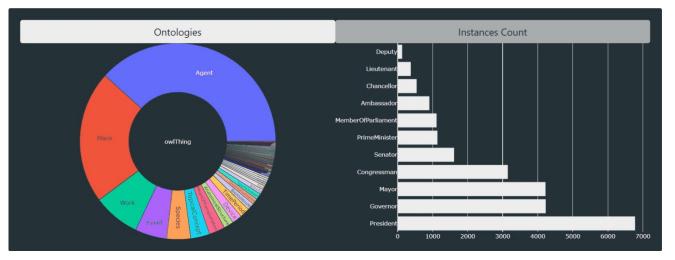
ID: https://databus.dbpedia.org/dlin

Example applications:

- Area or neighborhood-based i
- Map visualizations

?s wgs:lat ?lat: wgs:long ?long.

BIND((strdt(CONCAT("POINT(",?long," ",?lat,")"), geo:wktLiteral)) as ?x)


Extraction Artifact: Instance Types

ID: https://databus.dbpedia.org/dbpedia/mappings/instance-types/

special content variants: specific and transitive

Example applications: Filter entities by Type/Class using DBpedia Ontology

Extraction Artifact: Mapping-based Objects/Literals

ID: https://databus.dbpedia.org/dbpedia/mappings/mappingbased-objects/

special content variants: disjointDomain and disjointRange

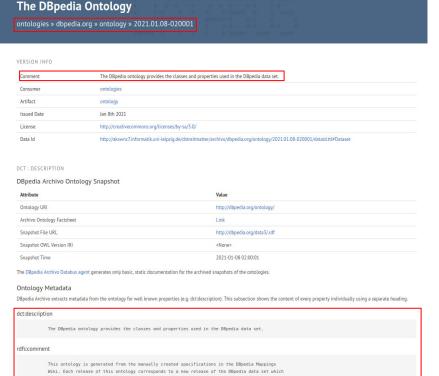
https://databus.dbpedia.org/dbpedia/mappings/mappingbased-literals/

"fact base" of the DBpedia KG containing object property / datatype property statements (numeric measurements are normalized to SI base units)

Example applications:

 unified querying for facts and entity relation across language versions using DBpedia ontology

223


DBpedia Ontology Artifact

DBpedia

- DBpedia Archivo uses the Databus for persistent arc
- dedicated ontologies publisher on the Databus
- Uses the ontology IRI for identification:
 - o publisher → ontologies
 - group → domain of the ontology
 - \circ artifact \rightarrow path of IRI (suffix --DEV for dev ont.)
 - version → timestamp of discovery/update

https://databus.dbpedia.org/ontologies/dbpedia.org/ontology--DEV_

- persistent, unified versioning & archiving of ontologic
- access archived metadata via SPARQL / Linked Data

information regarding changes in this ontology, please refer to the DBpedia Mappings Wiki

DBpedia Ontology: Archivo download API

- abstract identifiers for ontologies
- various parsed serialisations: RDF+XML, Turtle and N-Triples
- persistent snapshots of any ontology version

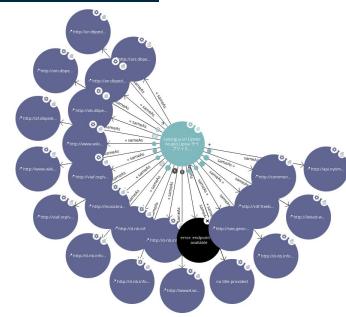
One REST request to fetch version of an ontology:

Fetch the latest DBpedia DEV ontology http://archivo.dbpedia.org/download?o=http://dbpedia.org/ontology/&f=ttl&dev \rightarrow

https://tinyurl.com/DBpediaDataWeek2024

Extraction Artifact: SameAs links

ID: https://databus.dbpedia.org/dbpedia/wikidata/sameas-all-wikis/


https://databus.dbpedia.org/dbpedia/wikidata/sameas-external/

Wikidata → DBpedia links

Wikidata → external links

Example applications:

- federated querying of entities
- knowledge fusion
- popularity indicator

DBpedia Global Identity Management

ID: https://databus.dbpedia.org/jj-author/id-management/global-ids/

- Entity clustering information (connected components), based on owl:sameAs links
- Assigns Global Identifiers for a cluster based on low test/cluster member Data

 "http://dbpedia.org/resource/FAIR_data_",

 "http://dbpedia.org/resource/FAIR_data_",

 "http://dbpedia.org/resource/FAIR_data_",
- allow to discover known references to other datasets."
- microservice which looks up cluster information for whitelisted known namespaces (including all DBpedia + Wikidata, amongst others)

```
"6rGeQ",
"6xyfG",
"7TyKK",
"9M7Pp",
"9NpGc",
```

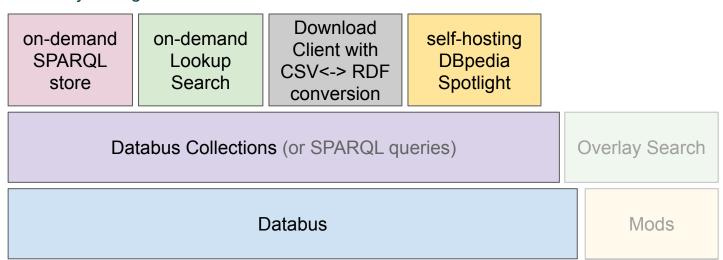
How to access the DBpedia KG?

Option F: Access through (public/self-deployed) DBpedia Services

- DBpedia Spotlight
 - Access at https://demo.dbpedia-spotlight.org/
 - Allows entity annotation of text
- DBpedia Lookup
 - Access at https://lookup.dbpedia.org
 - Keyword search and entity retrieval on DBpedia data
 - Dedicated prefix search for fast auto-complete in apps
 - Example queries:
 - https://lookup.dbpedia.org/api/search?query=Leipzig&maxResults=1
 - https://lookup.dbpedia.org/api/search?query=Leipzig&typeName=Organisation&maxResults=1

Demo

Browse <u>Latest-Core</u> collection and create a custom copy



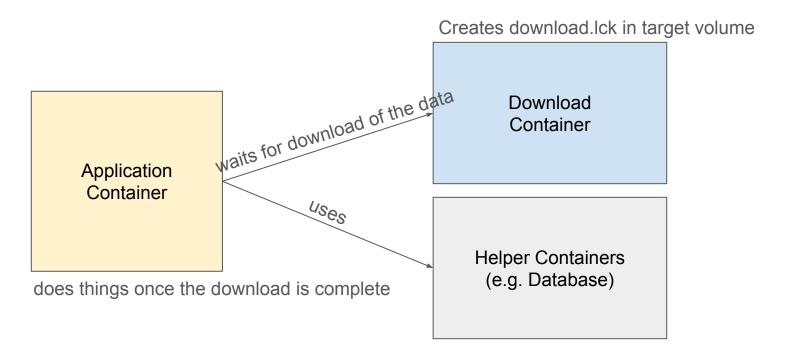
Self-deploy Services using Docker-Compose

The Databus Technology Stack

- a range of applications and services based on the Databus
- allows you to
 - deploy DBpedia services on your own infrastructure (no quota, full control)
 - on-demand services work with **any Collection of RDF data** out of the box in a generic + can be easily configured to work with other datasets

Databus Deploy Demo

- configuration
 - OIDC provider Identity provider (e.g. Keycloak, Azure Active Directory, Auth0)
 - HTTPS proxy and (DNS) namespace


- consists of 3 docker services/containers with several components:
 - SPARQL graph store (currently supported Virtuoso / Jena)
 - G-store (git versioning of metadata, + graph store sync for most recent version)
 - Databus frontend and middleware
 - Web Interface
 - User management and logic
 - Lookup for Index on metadata
 - Swagger API

0

Dockerized Databus Applications

Apps are run using docker-compose. Containers share data via volumes.

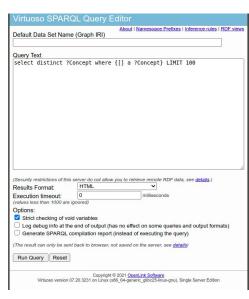
On-demand SPARQL store

Visit https://github.com/dbpedia/virtuoso-spargl-endpoint-quickstart

Composite of:

- Download Container
- Openlink Virtuoso Container (Helper Container)
- DBpedia Virtuoso Loader Container (Application Container)

On-demand SPARQL store

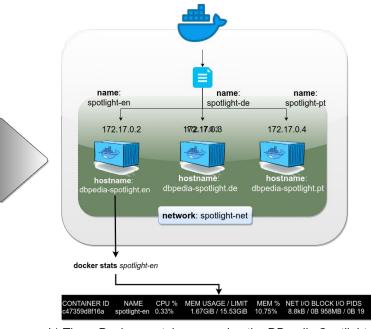

Load any Databus Collection automatically into a Virtuoso SPARQL Store

git clone https://github.com/dbpedia/virtuoso-sparql-endpoint-quickstart.git
cd virtuoso-sparql-endpoint-quickstart

COLLECTION_URI=https://databus.dbpedia.org/jan/collections/more-cities/ VIRTUOSO ADMIN PASSWD=YourSecretPassword docker-compose up

Use one of the DBpedia Release Collections or your custom fork to deploy the DBpedia KG locally

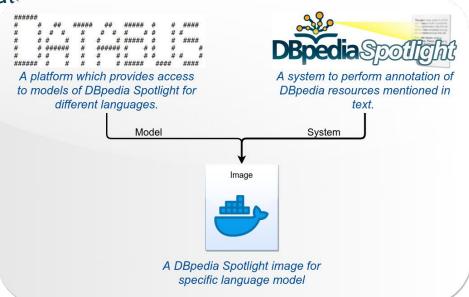
collection can be passed via environment variable or in compose setup



DBpedia Spotlight

 a) DBpedia Spotlight web application to annotate text for three different languages: English, German and Portuguese

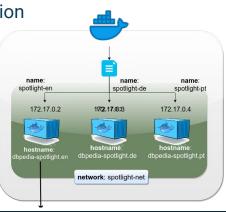
b) Three Docker containers running the DBpedia Spotlight service for the English, German and Portuguese languages.


https://demo.dbpedia-spotlight.org/

https://tinyurl.com/DBpediaDataWeek2024

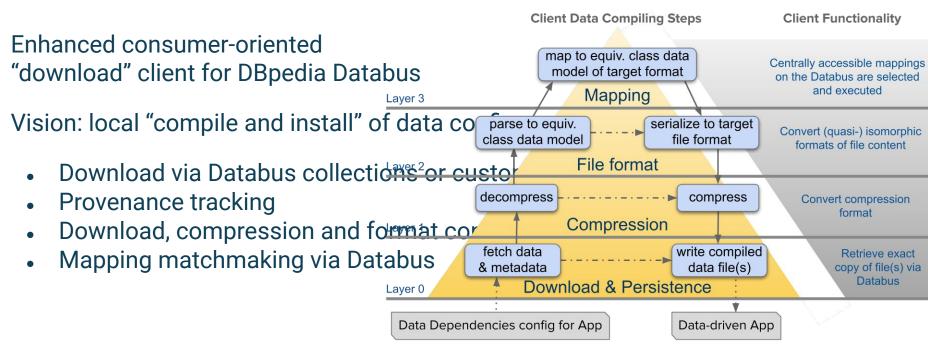
DBpedia Spotlight

- language models are managed on Databus
- but no generic/on-demand setup base
 models are trained on data features
- more complex Docker compose setu



https://databus.dbpedia.org/dbpedia/spotlight/

DBpedia Spotlight



- Setup DBpedia Spotlight Multilingual
 - Create a volume:
 - docker volume create spotlight-models
 - Create a Docker network:
 - docker network create spotlight-net
 - Download the example <u>docker compose</u> and <u>sites.xml</u> files
 - The docker compose file contains the setup of the DBpedia Spotlight services and the web application.
 - The sites.xml file defines the models available on the web application
 - Run docker compose file
 - docker-compose -f spotlight-compose.yml up -d
 - Spotlight running at: http://localhost:2222/

Databus Client

bin/DatabusClient -f ttl -c gz -s <collection-ID>

https://tinyurl.com/DBpediaDataWeek2024

DBpedia vs. Wikidata

Complementary but still different projects

- Wikidata not adopted to Wikipedia infoboxes
 - lost of workspace (47k editors vs 13k in Wikidata)
- Is Wikidata up-to-date?
 - o some corona related values we found were/are over 1 year old
 - ... likely only for stable values such as birth dates, but not for recent data
- Wikidata is growing
 - ... but this would require a lot more editors to cover all that and keep it updated
 - similar problem with Freebase
- Live Updates via DBpedia Live
 - o whenever something happens, in 30 min in Wikipedia, and then also in DBpedia Live
 - 2 Wikipedia edits every second!
- DBpedia Global "beyond" Wikipedia
 - link to recent and authoritative sources

Summary

- DBpedia Databus Platform
 - Upload data on the Databus
 - Work with Databus collections
- Consuming DBpedia via Databus
 - Dockerized DBpedia
 - Dockerized applications for the DBpedia Stack (Lookup, Spotlight)

Databus Mods & Overlay system